Advanced Search
Article Contents

Comparison of Field Measurements of CH4 Emission from Rice Cultivation in Nanjing, China and in Texas, USA


doi: 10.1007/s00376-001-0027-z

  • Field measurements of methane emission from rice paddies were made in Nanjing, China and in Texas, USA, respectively. Soil temperature at approximately 10 cm depth of the flooded soils was automatically recorded. Aboveground biomass of rice crop was measured approximately every 10 days in Nanjing and every other week in Texas. Seasonal variation of soil temperature in Nanjing was quite wide with a magnitude of 15.3℃ and that in Texas was narrow with a magnitude of 2.9℃. Analysis of methane emission fluxes against soil temperature and rice biomass production demonstrated that the seasonal course of methane emission in Nanjing was mostly attributed to soil temperature changes, while that in Texas was mainly related to rice biomass production. We concluded that under the permanent flooding condition, the seasonal trend of methane emission would be determined by the soil temperature where there was a wide variation of soil temperature, and the seasonal trend would be mainly determined by rice biomass production if there are no additional organic matter inputs and the variation of soil temperature over the rice growing season is small.
  • [1] Changyu ZHAO, Haishan CHEN, Shanlei SUN, 2018: Evaluating the Capabilities of Soil Enthalpy, Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 445-456.  doi: 10.1007/s00376-017-7006-5
    [2] Haoxin ZHANG, Naiming YUAN, Zhuguo MA, Yu HUANG, 2021: Understanding the Soil Temperature Variability at Different Depths: Effects of Surface Air Temperature, Snow Cover, and the Soil Memory, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 493-503.  doi: 10.1007/s00376-020-0074-y
    [3] Siqiong LUO, Zihang CHEN, Jingyuan WANG, Tonghua WU, Yao XIAO, Yongping QIAO, 2024: Impact of Initial Soil Conditions on Soil Hydrothermal and Surface Energy Fluxes in the Permafrost Region of the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 717-736.  doi: 10.1007/s00376-023-3100-z
    [4] Fuqiang YANG, Li DAN, Jing PENG, Xiujing YANG, Yueyue LI, Dongdong GAO, 2019: Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 79-92.  doi: 10.1007/s00376-018-8035-4
    [5] Wang Mingxing, Shangguan Xingjian, Shen Renxing, Wassmann Reiner, Seiler Wolfgang, 1993: Methane Production, Emission and Possible Control Measures in the Rice Agriculture, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 307-314.  doi: 10.1007/BF02658136
    [6] Lan Hongdi, Jiang Maoji, 1985: RESEARCH ON THE PHOTO-TEMPERATURE MODEL FOR THE DEVELOPMENTAL RATE OF RICE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 549-552.  doi: 10.1007/BF02678753
    [7] Ding Aiju, Wang Mingxing, 1996: Model for Methane Emission from Rice Fields and Its Application in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 159-168.  doi: 10.1007/BF02656859
    [8] ZOU Jianwen, HUANG Yao, ZONG Lianggang, ZHENG Xunhua, WANG Yuesi, 2004: Carbon Dioxide, Methane, and Nitrous Oxide Emissions from a Rice-Wheat Rotation as Affected by Crop Residue Incorporation and Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 691-698.  doi: 10.1007/BF02916366
    [9] Shili YANG, Wenjie DONG, Jieming CHOU, Yong ZHANG, Weixing ZHAO, 2024: Regional Climate Damage Quantification and Its Impacts on Future Emission Pathways Using the RICE Model, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3193-z
    [10] Zheng Xunhua, Wang Mingxing, Wang Yuesi, Shen Renxing, Li Jing, J. Heyer M. Kogge, Li Laotu, Jin Jisheng, 1998: Comparison of Manual and Automatic Methods for Measurement of Methane Emission from Rice Paddy Fields, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 569-579.  doi: 10.1007/s00376-998-0033-5
    [11] Zhang Renjian, Wang Mingxing, 1999: Modeling the Sudden Decrease in CH4 Growth Rate in 1992, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 242-250.  doi: 10.1007/BF02973085
    [12] ZHOU Zaixing, ZHENG Xunhua, XIE Baohua, HAN Shenghui, LIU Chunyan, 2010: A process-based model of N2O emission from a rice-winter wheat rotation agroecosystem: structure, validation and sensitivity, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 137-150.  doi: 10.1007/s00376-009-8191-7
    [13] SHEN Shuanghe, YANG Dong, XIAO Wei, LIU Shoudong, Xuhui LEE, 2014: Constraining Anthropogenic CH4 Emissions in Nanjing and the Yangtze River Delta, China, Using Atmospheric CO2 and CH4 Mixing Ratios, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1343-1352.  doi: 10.1007/s00376-014-3231-3
    [14] SU Mingfeng, LIN Yunping, FAN Xinqiang, PENG Li, ZHAO Chunsheng, 2012: Impacts of Global Emissions of CO, NOx, and CH4 on China Tropospheric Hydroxyl Free Radicals, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 838-854.  doi: 10.1007/s00376-012-1229-2
    [15] Wenjing HUANG, Timothy J. GRIFFIS, Cheng HU, Wei XIAO, Xuhui LEE, 2021: Seasonal Variations of CH4 Emissions in the Yangtze River Delta Region of China Are Driven by Agricultural Activities, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1537-1551.  doi: 10.1007/s00376-021-0383-9
    [16] WANG Geli, YANG Peicai, 2006: On the Nonlinear Response of Lower Stratospheric Ozone to Nox and ClOx Perturbations for Different CH4 Sources, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 750-757.  doi: 10.1007/s00376-006-0750-6
    [17] Qin XU, Binbin ZHOU, 2003: Retrieving Soil Water Contents from Soil Temperature Measurements by Using Linear Regression, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 849-858.  doi: 10.1007/BF02915509
    [18] XU Xingkai, Kazuyuki INUBUSHI, 2009: Soil Acidification Stimulates the Emission of Ethylene from Temperate Forest Soils, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1253-1261.  doi: 10.1007/s00376-009-8120-9
    [19] WANG Yuesi, WANG Yinghong, 2003: Quick Measurement of CH4, CO2 and N2O Emissions from a Short-Plant Ecosystem, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 842-844.  doi: 10.1007/BF02915410
    [20] ZHANG Xiaohui, GAO Zhiqiu, WEI Dongping, 2012: The Sensitivity of Ground Surface Temperature Prediction to Soil Thermal Properties Using the Simple Biosphere Model (SiB2)}, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 623-634.  doi: 10.1007/s00376-011-1162-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2001
Manuscript revised: 10 November 2001
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Comparison of Field Measurements of CH4 Emission from Rice Cultivation in Nanjing, China and in Texas, USA

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095,Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, USA,Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, USA

Abstract: Field measurements of methane emission from rice paddies were made in Nanjing, China and in Texas, USA, respectively. Soil temperature at approximately 10 cm depth of the flooded soils was automatically recorded. Aboveground biomass of rice crop was measured approximately every 10 days in Nanjing and every other week in Texas. Seasonal variation of soil temperature in Nanjing was quite wide with a magnitude of 15.3℃ and that in Texas was narrow with a magnitude of 2.9℃. Analysis of methane emission fluxes against soil temperature and rice biomass production demonstrated that the seasonal course of methane emission in Nanjing was mostly attributed to soil temperature changes, while that in Texas was mainly related to rice biomass production. We concluded that under the permanent flooding condition, the seasonal trend of methane emission would be determined by the soil temperature where there was a wide variation of soil temperature, and the seasonal trend would be mainly determined by rice biomass production if there are no additional organic matter inputs and the variation of soil temperature over the rice growing season is small.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return