Advanced Search
Article Contents

Predictions of ENSO with a Coupled Atmosphere-Ocean General Circulation Model


doi: 10.1007/s00376-001-0047-8

  • Predictions of ENSO are described by using a coupled atmosphere-ocean general circulation model. The initial conditions are created by forcing the coupled system using SST anomalies in the tropical Pacific at the background of the coupled model climatology. A series of 24-month hindcasts for the period from November 1981 to December 1997 are carried out to validate the performance of the coupled system. Correlations of SST anomalies in the Nino3 region exceed 0.54 up to 15 months in advance and the rms errors are less than 0.9℃. The system is more skillful in predicting SST anomalies in the 1980s and less in the 1990s. The model skills are also seasonal-dependent, which are lower for the predictions starting from late autumn to winter and higher for those from spring to autumn in a year-time forecast length. The prediction, beginning from March, persists 8 months long with the correlation skill exceeding 0.6, which is important in predictions of summer rainfall in China. The predictions are succesful in many aspects for the 1997-2000 ENSO events.
  • [1] LI Shan, RONG Xingyao, LIU Yun, LIU Zhengyu, Klaus FRAEDRICH, 2013: Dynamic Analogue Initialization for Ensemble Forecasting, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1406-1420.  doi: 10.1007/s00376-012-2244-z
    [2] Wang Huijun, Zhou Guangqing, Lin Zhaohui, Zhao Yan, Guo Yufu, Ma Zhuguo, 2001: Recent Researches on the Short-Term Climate Prediction at IAP-A Brief Review, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 929-936.
    [3] Wu Aiming, Ni Yunqi, 1999: A Hybrid Coupled Ocean-Atmosphere Model and ENSO Prediction Study, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 405-418.  doi: 10.1007/s00376-999-0019-y
    [4] Chuan GAO, Xinrong WU, Rong-Hua ZHANG, 2016: Testing a Four-Dimensional Variational Data Assimilation Method Using an Improved Intermediate Coupled Model for ENSO Analysis and Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 875-888.  doi: 10.1007/s00376-016-5249-1
    [5] Ben TIAN, Hong-Li REN, 2022: Diagnosing SST Error Growth during ENSO Developing Phase in the BCC_CSM1.1(m) Prediction System, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 427-442.  doi: 10.1007/s00376-021-1189-5
    [6] Lu ZHOU, Rong-Hua ZHANG, 2022: A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 889-902.  doi: 10.1007/s00376-021-1368-4
    [7] LIN Zhaohui, WANG Huijun, ZHOU Guangqing, CHEN Hong, LANG Xianmei, ZHAO Yan, ZENG Qingcun, 2004: Recent Advances in Dynamical Extra-Seasonal to Annual Climate Prediction at IAP/CAS, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 456-466.  doi: 10.1007/BF02915572
    [8] Jo-Han LEE, Dong-Kyou LEE, Hyun-Ha LEE, Yonghan CHOI, Hyung-Woo KIM, 2010: Radar Data Assimilation for the Simulation of Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1025-1042.  doi: 10.1007/s00376-010-9162-8
    [9] Lei ZHU, Zhiyong MENG, Yonghui WENG, Fuqing ZHANG, 2022: Assimilation of All-sky Geostationary Satellite Infrared Radiances for Convection-Permitting Initialization and Prediction of Hurricane Joaquin (2015), ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1859-1872.  doi: 10.1007/s00376-022-2015-4
    [10] Chen Qiying, Yu Yongqiang, Guo Yufu, 1997: Simulation of East Asian Summer Monsoon with IAP CGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 461-472.  doi: 10.1007/s00376-997-0064-3
    [11] Akio KITOH, Masahiro HOSAKA, Yukimasa ADACHI, Kenji KAMIGUCHI, 2005: Future Projections of Precipitation Characteristics in East Asia Simulated by the MRI CGCM2, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 467-478.  doi: 10.1007/BF02918481
    [12] Rong FENG, Wansuo DUAN, 2019: Indian Ocean Dipole-related Predictability Barriers Induced by Initial Errors in the Tropical Indian Ocean in a CGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 658-668.  doi: 10.1007/s00376-019-8224-9
    [13] GUO Weidong, WANG Huijun, 2003: A Case Study of the Improvement of Soil Moisture Initialization in IAP-PSSCA, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 845-848.  doi: 10.1007/BF02915411
    [14] Shen Rujin, Elmar R. Reiter, James F. Bresch, Zhang Shuhua, 1988: ON TEMPERATURE INITIALIZATION IN PRIMITIVE EQUA-TION FORECAST MODELS, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 195-208.  doi: 10.1007/BF02656781
    [15] Donglei SHI, Guanghua CHEN, Ke WANG, Xinxin BI, Kexin CHEN, 2020: Evaluation of Two Initialization Schemes for Simulating the Rapid Intensification of Typhoon Lekima (2019), ADVANCES IN ATMOSPHERIC SCIENCES, 37, 987-1006.  doi: 10.1007/s00376-020-2038-7
    [16] ZHANG Xiaoyan, WANG Bin, JI Zhongzhen, Qingnong XIAO, ZHANG Xin, 2003: Initialization and Simulation of a Typhoon Using 4-Dimensional Variational Data Assimilation-Research on Typhoon Herb(1996), ADVANCES IN ATMOSPHERIC SCIENCES, 20, 612-622.  doi: 10.1007/BF02915504
    [17] GAO Feng*, Peter P. CHILDS, Xiang-Yu HUANG, Neil A. JACOBS, and Jinzhong MIN, 2014: A Relocation-based Initialization Scheme to Improve Track-forecasting of Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 27-36.  doi: 10.1007/s00376-013-2254-5
    [18] Mingkui LI, Shaoqing ZHANG, Lixin WU, Xiaopei LIN, Ping CHANG, Gohkan DANABASOGLU, Zhiqiang WEI, Xiaolin YU, Huiqin HU, Xiaohui MA, Weiwei MA, Haoran ZHAO, Dongning JIA, Xin LIU, Kai MAO, Youwei MA, Yingjing JIANG, Xue WANG, Guangliang LIU, Yuhu CHEN, 2020: An Examination of the Predictability of Tropical Cyclone Genesis in High-Resolution Coupled Models with Dynamically Downscaled Coupled Data Assimilation Initialization, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 939-950.  doi: 10.1007/s00376-020-9220-9
    [19] Mingkui LI, Shaoqing ZHANG, Lixin WU, Xiaopei LIN, Ping CHANG, Gohkan DANABASOGLU, Zhiqiang WEI, Xiaolin YU, Huiqin HU, Xiaohui MA, Weiwei MA, Haoran ZHAO, Dongning JIA, Xin LIU, Kai MAO, Youwei MA, Yingjing JIANG, Xue WANG, Guangliang LIU, Yuhu CHEN, 2020: Erratum to: An Examination of the Predictability of Tropical Cyclone Genesis in High-Resolution Coupled Models with Dynamically Downscaled Coupled Data Assimilation Initialization, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1296-1296.  doi: 10.1007/s00376-020-2015-1
    [20] Chunzai Wang, 2001: On the ENSO Mechanisms, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 674-691.

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2001
Manuscript revised: 10 July 2001
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Predictions of ENSO with a Coupled Atmosphere-Ocean General Circulation Model

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Predictions of ENSO are described by using a coupled atmosphere-ocean general circulation model. The initial conditions are created by forcing the coupled system using SST anomalies in the tropical Pacific at the background of the coupled model climatology. A series of 24-month hindcasts for the period from November 1981 to December 1997 are carried out to validate the performance of the coupled system. Correlations of SST anomalies in the Nino3 region exceed 0.54 up to 15 months in advance and the rms errors are less than 0.9℃. The system is more skillful in predicting SST anomalies in the 1980s and less in the 1990s. The model skills are also seasonal-dependent, which are lower for the predictions starting from late autumn to winter and higher for those from spring to autumn in a year-time forecast length. The prediction, beginning from March, persists 8 months long with the correlation skill exceeding 0.6, which is important in predictions of summer rainfall in China. The predictions are succesful in many aspects for the 1997-2000 ENSO events.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return