Advanced Search
Article Contents

The Improvement Made by a Modified TLM in 4DVAR with a Geophysical Boundary Layer Model


doi: 10.1007/s00376-002-0001-4

  • The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows longer. Consequently, the related 4-D variational data assimilation problems could be difficult to solve. A modified tangent linear model is built on the Mellor-Yamada turbulent closure (level 2.5) for 4-D variational data assimilation. For oceanic mixed layer model settings, the modified tangent linear model produces better finite amplitude, nonlinear perturbation than the full and simplified tangent linear models when the integration time is longer than one day. The corresponding variational data assimilation performances based on the adjoint of the modified tangent linear model are also improved compared with those adjoints of the full and simplified tangent linear models.
  • [1] PAN Naixian, LI Chengcai, 2008: Deduction of the Sensible Heat Flux from SODAR Data, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 253-266.  doi: 10.1007/s00376-008-0253-8
    [2] ZHENG Xiaogu, WU Guocan, ZHANG Shupeng, LIANG Xiao, DAI Yongjiu, LI Yong, , 2013: Using Analysis State to Construct a Forecast Error Covariance Matrix in Ensemble Kalman Filter Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1303-1312.  doi: 10.1007/s00376-012-2133-5
    [3] Qinyu LIU, Yiqun LU, 2016: Role of Horizontal Density Advection in Seasonal Deepening of the Mixed Layer in the Subtropical Southeast Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 442-451.  doi: 10.1007/s00376-015-5111-x
    [4] GAO Feng*, Peter P. CHILDS, Xiang-Yu HUANG, Neil A. JACOBS, and Jinzhong MIN, 2014: A Relocation-based Initialization Scheme to Improve Track-forecasting of Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 27-36.  doi: 10.1007/s00376-013-2254-5
    [5] Zhiyong MENG, Eugene E. CLOTHIAUX, 2022: Contributions of Fuqing ZHANG to Predictability, Data Assimilation, and Dynamics of High Impact Weather: A Tribute, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 676-683.  doi: 10.1007/s00376-021-1362-x
    [6] Yong LI, Siming LI, Yao SHENG, Luheng WANG, 2018: Data Assimilation Method Based on the Constraints of Confidence Region, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 334-345.  doi: 10.1007/s00376-017-7045-y
    [7] Bohua Huang, James L. Kinter III, Paul S. Schopf, 2002: Ocean Data Assimilation Using Intermittent Analyses and Continuous Model Error Correction, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 965-992.  doi: 10.1007/s00376-002-0059-z
    [8] FU Weiwei, ZHOU Guangqing, WANG Huijun, 2004: Ocean Data Assimilation with Background Error Covariance Derived from OGCM Outputs, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 181-192.  doi: 10.1007/BF02915704
    [9] Banglin ZHANG, Vijay TALLAPRAGADA, Fuzhong WENG, Jason SIPPEL, Zaizhong MA, 2015: Use of Incremental Analysis Updates in 4D-Var Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1575-1582.  doi: 10.1007/s00376-015-5041-7
    [10] Jidong GAO, Keith BREWSTER, Ming XUE, 2006: A Comparison of the Radar Ray Path Equations and Approximations for Use in Radar Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 190-198.  doi: 10.1007/s00376-006-0190-3
    [11] Fuqing ZHANG, Meng ZHANG, James A. HANSEN, 2009: Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1-8.  doi: 10.1007/s00376-009-0001-8
    [12] Xiaogu ZHENG, 2009: An Adaptive Estimation of Forecast Error Covariance Parameters for Kalman Filtering Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 154-160.  doi: 10.1007/s00376-009-0154-5
    [13] Xiaoli XIA, Jinzhong MIN, Feifei SHEN, Yuanbing WANG, Chun YANG, 2019: Aerosol Data Assimilation Using Data from Fengyun-3A and MODIS: Application to a Dust Storm over East Asia in 2011, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1-14.  doi: 10.1007/s00376-018-8075-9
    [14] Yaodeng CHEN, Jie SHEN, Shuiyong FAN, Deming MENG, Cheng WANG, 2020: Characteristics of Fengyun-4A Satellite Atmospheric Motion Vectors and Their Impacts on Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1222-1238.  doi: 10.1007/s00376-020-0080-0
    [15] Guifu ZHANG, Jidong GAO, Muyun DU, 2021: Parameterized Forward Operators for Simulation and Assimilation of Polarimetric Radar Data with Numerical Weather Predictions, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 737-754.  doi: 10.1007/s00376-021-0289-6
    [16] HOU Tuanjie, Fanyou KONG, CHEN Xunlai, LEI Hengchi, HU Zhaoxia, 2015: Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 967-978.  doi: 10.1007/s00376-014-4155-7
    [17] Chaoqun MA, Tijian WANG, Zengliang ZANG, Zhijin LI, 2018: Comparisons of Three-Dimensional Variational Data Assimilation and Model Output Statistics in Improving Atmospheric Chemistry Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 813-825.  doi: 10.1007/s00376-017-7179-y
    [18] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y
    [19] LIU Juanjuan, WANG Bin, WANG Shudong, 2010: The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1303-1310.  doi: 10.1007/s00376-010-9067-6
    [20] BAI Yulong, LI Xin, and HUANG Chunlin, 2013: Handling error propagation in sequential data assimilation using an evolutionary strategy, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1096-1105.  doi: 10.1007/s00376-012-2115-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2002
Manuscript revised: 10 July 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Improvement Made by a Modified TLM in 4DVAR with a Geophysical Boundary Layer Model

  • 1. ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,National Natural Science Foundation of China, Beijing 100085,Meteorological Research Institute, Tsukuba, Japan

Abstract: The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows longer. Consequently, the related 4-D variational data assimilation problems could be difficult to solve. A modified tangent linear model is built on the Mellor-Yamada turbulent closure (level 2.5) for 4-D variational data assimilation. For oceanic mixed layer model settings, the modified tangent linear model produces better finite amplitude, nonlinear perturbation than the full and simplified tangent linear models when the integration time is longer than one day. The corresponding variational data assimilation performances based on the adjoint of the modified tangent linear model are also improved compared with those adjoints of the full and simplified tangent linear models.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return