Advanced Search
Article Contents

Scaling the Microphysics Equations and Analyzing the Variability of Hydrometeor Production Rates in a Controlled Parameter Space


doi: 10.1007/s00376-002-0004-1

  • A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations. The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis. From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations.
  • [1] XUE Hai-Le, SHEN Xue-Shun, CHOU Ji-Fan, 2013: A Forecast Error Correction Method in Numerical Weather Prediction by Using Recent Multiple-time Evolution Data, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1249-1259.  doi: 10.1007/s00376-013-2274-1
    [2] Feifei SHEN, Aiqing SHU, Zhiquan LIU, Hong LI, Lipeng JIANG, Tao ZHANG, Dongmei XU, 2024: Assimilating FY-4A AGRI Radiances with a Channel-Sensitive Cloud Detection Scheme for the Analysis and Forecasting of Multiple Typhoons, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 937-958.  doi: 10.1007/s00376-023-3072-z
    [3] Jianhua LU, 2021: Chen-Chao Koo and the Early Numerical Weather Prediction Experiments in China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 707-716.  doi: 10.1007/s00376-021-0268-y
    [4] XUE Jishan, 2004: Progresses of Researches on Numerical Weather Prediction in China: 1999-2002, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 467-474.  doi: 10.1007/BF02915573
    [5] Guifu ZHANG, Vivek N. MAHALE, Bryan J. PUTNAM, Youcun QI, Qing CAO, Andrew D. BYRD, Petar BUKOVCIC, Dusan S. ZRNIC, Jidong GAO, Ming XUE, Youngsun JUNG, Heather D. REEVES, Pamela L. HEINSELMAN, Alexander RYZHKOV, Robert D. PALMER, Pengfei ZHANG, Mark WEBER, Greg M. MCFARQUHAR, Berrien MOORE III, Yan ZHANG, Jian ZHANG, J. VIVEKANANDAN, Yasser AL-RASHID, Richard L. ICE, Daniel S. BERKOWITZ, Chong-chi TONG, Caleb FULTON, Richard J. DOVIAK, 2019: Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 571-588.  doi: 10.1007/s00376-019-8172-4
    [6] Sen YANG, Deqin LI, Liqiang CHEN, Zhiquan LIU, Xiang-Yu HUANG, Xiao PAN, 2023: The Regularized WSM6 Microphysical Scheme and Its Validation in WRF 4D-Var, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 483-500.  doi: 10.1007/s00376-022-2058-6
    [7] XUE Jishan, LIU Yan, 2007: Numerical Weather Prediction in China in the New Century ---Progress, Problems and Prospects, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1099-1108.  doi: 10.1007/s00376-007-1099-1
    [8] Hongqin ZHANG, Xiangjun TIAN, Wei CHENG, Lipeng JIANG, 2020: System of Multigrid Nonlinear Least-squares Four-dimensional Variational Data Assimilation for Numerical Weather Prediction (SNAP): System Formulation and Preliminary Evaluation, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1267-1284.  doi: 10.1007/s00376-020-9252-1
    [9] Guifu ZHANG, Jidong GAO, Muyun DU, 2021: Parameterized Forward Operators for Simulation and Assimilation of Polarimetric Radar Data with Numerical Weather Predictions, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 737-754.  doi: 10.1007/s00376-021-0289-6
    [10] Qizhen SUN, Timo VIHMA, Marius O. JONASSEN, Zhanhai ZHANG, 2020: Impact of Assimilation of Radiosonde and UAV Observations from the Southern Ocean in the Polar WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 441-454.  doi: 10.1007/s00376-020-9213-8
    [11] Lei HAN, Mingxuan CHEN, Kangkai CHEN, Haonan CHEN, Yanbiao ZHANG, Bing LU, Linye SONG, Rui QIN, 2021: A Deep Learning Method for Bias Correction of ECMWF 24–240 h Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1444-1459.  doi: 10.1007/s00376-021-0215-y
    [12] Man-Yau CHAN, Xingchao CHEN, 2022: Improving the Analyses and Forecasts of a Tropical Squall Line Using Upper Tropospheric Infrared Satellite Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 733-746.  doi: 10.1007/s00376-021-0449-8
    [13] Marcus JOHNSON, Youngsun JUNG, Daniel DAWSON, Timothy SUPINIE, Ming XUE, Jongsook PARK, Yong-Hee LEE, 2018: Evaluation of Unified Model Microphysics in High-resolution NWP Simulations Using Polarimetric Radar Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 771-784.  doi: 10.1007/s00376-017-7177-0
    [14] Luyao QIN, Yaodeng CHEN, Gang MA, Fuzhong WENG, Deming MENG, Peng ZHANG, 2023: Assimilation of FY-3D MWTS-II Radiance with 3D Precipitation Detection and the Impacts on Typhoon Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 900-919.  doi: 10.1007/s00376-022-1252-x
    [15] Fabien CARMINATI, Stefano MIGLIORINI, 2021: All-sky Data Assimilation of MWTS-2 and MWHS-2 in the Met Office Global NWP System., ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1682-1694.  doi: 10.1007/s00376-021-1071-5
    [16] Wanchen WU, Wei HUANG, Baode CHEN, 2022: A Comparison of Two Bulk Microphysics Parameterizations for the Study of Aerosol Impacts on an Idealized Supercell, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 97-116.  doi: 10.1007/s00376-021-1187-7
    [17] Kanghui ZHOU, Jisong SUN, Yongguang ZHENG, Yutao ZHANG, 2022: Quantitative Precipitation Forecast Experiment Based on Basic NWP Variables Using Deep Learning, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1472-1486.  doi: 10.1007/s00376-021-1207-7
    [18] S. N. Bavadekar, R. M. Khaladkar, 1994: Estimation of Winds at Different Isobaric Levels Based on the Observed Winds at 850 hPa Level Using Double Fourier Series, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 327-334.  doi: 10.1007/BF02658152
    [19] Da-Lin ZHANG, Xiaoxue WANG, 2003: Dependence of Hurricane Intensity and Structures on Vertical Resolution and Time-Step Size, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 711-725.  doi: 10.1007/BF02915397
    [20] Fabien CARMINATI, Brett CANDY, William BELL, Nigel ATKINSON, 2018: Assessment and Assimilation of FY-3 Humidity Sounders and Imager in the UK Met Office Global Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 942-954.  doi: 10.1007/s00376-018-7266-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2002
Manuscript revised: 10 July 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Scaling the Microphysics Equations and Analyzing the Variability of Hydrometeor Production Rates in a Controlled Parameter Space

  • 1. NO AA Forecast Systems Laboratory, Boulder, Colorado, USA, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA,NO AA Forecast Systems Laboratory, Boulder, Colorado, USA, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA,NO AA Forecast Systems Laboratory, Boulder, Colorado, USA, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA

Abstract: A set of microphysics equations is scaled based on the convective length and velocity scales. Comparisons are made among the dynamical transport and various microphysical processes. From the scaling analysis, it becomes apparent which parameterized microphysical processes present off-scaled influences in the integration of the set of microphysics equations. The variabilities of the parameterized microphysical processes are also studied using the approach of a controlled parameter space. Given macroscopic dynamic and thermodynamic conditions in different regions of convective storms, it is possible to analyze and compare vertical profiles of these processes. Bulk diabatic heating profiles for a cumulus convective updraft and downdraft are also derived from this analysis. From the two different angles, the scale analysis and the controlled-parameter space approach can both provide an insight into and an understanding of microphysics parameterizations.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return