Advanced Search
Article Contents

Identification of Coherent Structures of Turbulence at the Atmospheric Surface Layer


doi: 10.1007/s00376-002-0008-x

  • A parameter-free method based on orthonormal wavelet transforms is recommended for calculating the principal time scale of coherent structures in atmospheric boundary-layer measurements. First, the atmospheric turbulent signal is decomposed into the small scate vortex that has approximate isotropy and the large scale vortex with the digital filter. Then, the large scale vortex is used to detect colterent structures with this method. The principal time scale and profile of coherent structures for velocity components (u, v, w)above rice fields are obtained. In order to testify the validity of this method, the correlation of coherent structures and non-coherent structures are also calculated.
  • [1] Yu SHI, Qingcun ZENG, Fei HU, Weichen DING, Zhe ZHANG, Kang ZHANG, Lei LIU, 2023: Different Turbulent Regimes and Vertical Turbulence Structures of the Urban Nocturnal Stable Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-022-2198-8
    [2] CHENG Xue-Ling, HUANG Jian, WU Lin, ZENG Qing-Cun, 2015: Structures and Characteristics of the Windy Atmospheric Boundary Layer in the South China Sea Region during Cold Surges, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 772-782.  doi: 10.1007/s00376-014-4228-7
    [3] Paul D. WILLIAMS, 2017: Increased Light, Moderate, and Severe Clear-Air Turbulence in Response to Climate Change, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 576-586.  doi: 10.1007/s00376-017-6268-2
    [4] LI Wanli, LU Shihua, FU Shenming, MENG Xianhong, H. C. NNAMCHI, 2011: Numerical Simulation of Fluxes Generated by Inhomogeneities of the Underlying Surface over the Jinta Oasisin Northwestern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 887-906.  doi: 10.1007/s00376-010-0041-0
    [5] P. VINAY KUMAR, Gopa DUTTA, M.V. RATNAM, E. KRISHNA, B. BAPIRAJU, B. Venkateswara RAO, Salauddin MOHAMMAD, 2016: Impact of Cyclone Nilam on Tropical Lower Atmospheric Dynamics, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 955-968.  doi: 10.1007/s00376-016-5285-x
    [6] HU Yongyun, 2007: Probability Distribution Function of a Forced Passive Tracer in the Lower Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 163-180.  doi: 10.1007/s00376-007-0163-1
    [7] LIU Hongnian, JIANG Weimei, HUANG Jian, MAO Weikang, 2011: Characteristics of the Boundary Layer Structure of Sea Fog on the Coast of Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1377-1389.  doi: 10.1007/s00376-011-0191-8
    [8] LIU Duanyang, YANG Jun, NIU Shengjie, LI Zihua, 2011: On the Evolution and Structure of a Radiation Fog Event in Nanjing, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 223-237.  doi: 10.1007/s00376-010-0017-0
    [9] Yang HE, Xiaoqian ZHU, Zheng SHENG, Wei GE, Xiaoran ZHAO, Mingyuan HE, 2022: Atmospheric Disturbance Characteristics in the Lower-middle Stratosphere Inferred from Observations by the Round-Trip Intelligent Sounding System (RTISS) in China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 131-144.  doi: 10.1007/s00376-021-1110-2
    [10] Liu Shikuo, Peng Weihong, Huang Feng, Chi Dongyan, 2002: Effects of Turbulent Dispersion on the Wind Speed Profile in the Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 794-806.  doi: 10.1007/s00376-002-0045-5
    [11] Chen Wuhe, Situ Da, Zhong Xubin, 1998: Atmospheric Refractive Turbulence Effect on Diffraction-Limited Infrared Coherent Lidar, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 124-134.  doi: 10.1007/s00376-998-0024-6
    [12] Li Xin, Hu Fei, Liu Gang, Hong Zhongxiang, 2001: Multi-scale Fractal Characteristics of Atmospheric Boundary-Layer Turbulence, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 787-792.
    [13] Marco Y. T. LEUNG, Wen ZHOU, Chi-Ming SHUN, Pak-Wai CHAN, 2018: Large-scale Circulation Control of the Occurrence of Low-level Turbulence at Hong Kong International Airport, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 435-444.  doi: 10.1007/s00376-017-7118-y
    [14] Da-Lin ZHANG, Xiaoxue WANG, 2003: Dependence of Hurricane Intensity and Structures on Vertical Resolution and Time-Step Size, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 711-725.  doi: 10.1007/BF02915397
    [15] Liu Shida, Liu Shikuo, Xin Guojun, Liang Fuming, 1994: The Theoretical Model of Atmospheric Turbulence Spectrum in Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 408-414.  doi: 10.1007/BF02658160
    [16] Silvia Alessio, Arnaldo Longhetto, Luo Meixia, 1999: The Space and Time Features of Global SST Anomalies Studied by Complex Principal Component Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 1-23.  doi: 10.1007/s00376-999-0001-8
    [17] Chen Ming, Hong Zhongxiang, Arnaldo Longhetto, Richiardone Renzo, 1996: Sensitivity Study of Nonlocal Turbulence Closure Scheme in Local Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 147-158.  doi: 10.1007/BF02656858
    [18] LI Maoshan, MA Yaoming, MA Weiqiang, HU Zeyong, ISHIKAWA Hirohiko, Zhongbo SU, SUN Fanglin, 2006: Analysis of Turbulence Characteristics over the Northern Tibetan Plateau Area, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 579-585.  doi: 10.1007/s00376-006-0579-z
    [19] Fang Juan, Wu Rongsheng, 1998: Frontogenesis, Evolution and the Time Scale of Front Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 233-246.  doi: 10.1007/s00376-998-0042-4
    [20] Yue JIANG, Liguang WU, Haikun ZHAO, Xingyang ZHOU, Qingyuan LIU, 2020: Azimuthal Variations of the Convective-scale Structure in a Simulated Tropical Cyclone Principal Rainband, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1239-1255.  doi: 10.1007/s00376-020-9248-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2002
Manuscript revised: 10 July 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Identification of Coherent Structures of Turbulence at the Atmospheric Surface Layer

  • 1. LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: A parameter-free method based on orthonormal wavelet transforms is recommended for calculating the principal time scale of coherent structures in atmospheric boundary-layer measurements. First, the atmospheric turbulent signal is decomposed into the small scate vortex that has approximate isotropy and the large scale vortex with the digital filter. Then, the large scale vortex is used to detect colterent structures with this method. The principal time scale and profile of coherent structures for velocity components (u, v, w)above rice fields are obtained. In order to testify the validity of this method, the correlation of coherent structures and non-coherent structures are also calculated.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return