Advanced Search
Article Contents

On Problem of Nonlinear Symmetric Instability in Zonal Shear Flow


doi: 10.1007/s00376-002-0027-7

  • This paper is focused on the problem of nonlinear symmetric instability in a baroclinic basic flow. The limited amplitude characteristics of unsteady wave were investigated with the aid of equations of adiabatic,inviscid, nonlinear symmetric disturbance and a multi-scale singular perturbation technique. Evidence suggests that the limited amplitude of unsteady wave exhibits an oscillatory trend of its intensity: the amplitude of the symmetric disturbance displays periodical variation both in super- and sub-critical shear case, and the duration of the periods is related not only to the stability parameters of the basic field and wave properties but to the amplitude of initial disturbance and its time-varying change rate as well.
  • [1] LU Weisong, SHAO Haiyan, 2003: Generalized Nonlinear Subcritical Symmetric Instability, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 623-630.  doi: 10.1007/BF02915505
    [2] Ji Zhongzhen, Lin Wantao, Yang Xiaozhong, 2001: Problems of Nonlinear Computational Instability in Evolution Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 397-403.  doi: 10.1007/BF02919318
    [3] Lu LIU, Lingkun RAN, Shouting GAO, 2016: Evolution of Instability before and during a Torrential Rainstorm in North China, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 110-120.  doi: 10.1007/s00376-015-5080-0
    [4] Mu Mu, Xiang Jie, 1998: On the Evolution of Finite-amplitude Disturbance to the Barotropic and Baroclinic Quasigeostrophic Flows, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 113-123.  doi: 10.1007/s00376-998-0023-7
    [5] Li Yang, Mu Mu, 1996: Baroclinic Instability in the Generalized Phillips’ Model Part I: Two-layer Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 33-42.  doi: 10.1007/BF02657026
    [6] Zhaoxia PU, Joshua HACKER, 2009: Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 373-380.  doi: 10.1007/s00376-009-0373-9
    [7] Li Chongyin, Liao Qinghai, 1996: Behaviour of Coupled Modes in a Simple Nonlinear Air-Sea Interaction Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 183-195.  doi: 10.1007/BF02656861
    [8] SHEN Xinyong, DING Yihui, ZHAO Nan, 2006: Properties and Stability of a Meso-Scale Line-Form Disturbance, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 282-290.  doi: 10.1007/s00376-006-0282-0
    [9] Yong. L. McHall, 1992: Nonlinear Planetary Wave Instability and Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 173-190.  doi: 10.1007/BF02657508
    [10] Liu Yongming, 1999: Nonlinear Stability of Zonally Symmetric Quasi-geostrophic Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 107-118.  doi: 10.1007/s00376-999-0007-2
    [11] Mu Mu, Guo Huan, Wang Jiafeng, LiYong, 2000: The Impact of Nonlinear Stability and Instability on the Validity of the Tangent Linear Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 375-390.  doi: 10.1007/s00376-000-0030-9
    [12] Xiang Jie, Sun Litan, 2002: Nonlinear Saturation of Baroclinic Instability in the Phillips Model: The Case of Energy, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 1079-1090.  doi: 10.1007/s00376-002-0066-0
    [13] Fei Jianfang, Lu Hancheng, 1996: Study on Instability in Baroclinic Vortex Symmetric Disturbance under Effect of Nonuniform Environmental Parameters, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 461-470.  doi: 10.1007/BF03342037
    [14] Shou Shaowen, Liu Yaohui, 1999: Study on Moist Potential Vorticity and Symmetric Instability during a Heavy Rain Event Occurred in the Jiang-Huai Valleys, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 314-321.  doi: 10.1007/BF02973091
    [15] Yao Dirong, 1988: THE NONLINEAR DISCRIMINANT AND STEPWISE NONLINEAR DISCRIMINANT ANALYSES, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 27-34.  doi: 10.1007/BF02657343
    [16] Liu Shida, Liu Shikuo, 1985: NONLINEAR WAVES IN BAROTROPIC MODEL, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 147-157.  doi: 10.1007/BF03179747
    [17] Zhang Xuehong, Zeng Qingcun, Bao Ning, 1986: NONLINEAR BAROCLINIC HAURWITZ WAVES, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 330-340.  doi: 10.1007/BF02678653
    [18] Liu Shida, Liu Shikuo, 1990: Advances in Studies on Nonlinear Atmospheric Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 227-244.  doi: 10.1007/BF02919161
    [19] ZHANG Qiong, GUAN Yue, YANG Haijun, 2008: ENSO Amplitude Change in Observation and Coupled Models, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 361-366.  doi: 10.1007/s00376-008-0361-5
    [20] ZANG Zengliang, ZHANG Ming, 2008: A Study of the Environmental Influence on the Amplitude of Lee Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 474-480.  doi: 10.1007/s00376-008-0474-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2002
Manuscript revised: 10 March 2002
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

On Problem of Nonlinear Symmetric Instability in Zonal Shear Flow

  • 1. Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Chinese Academy of Meteorological Sciences, Beijing 100081,National Climate Center, Beijing 100081

Abstract: This paper is focused on the problem of nonlinear symmetric instability in a baroclinic basic flow. The limited amplitude characteristics of unsteady wave were investigated with the aid of equations of adiabatic,inviscid, nonlinear symmetric disturbance and a multi-scale singular perturbation technique. Evidence suggests that the limited amplitude of unsteady wave exhibits an oscillatory trend of its intensity: the amplitude of the symmetric disturbance displays periodical variation both in super- and sub-critical shear case, and the duration of the periods is related not only to the stability parameters of the basic field and wave properties but to the amplitude of initial disturbance and its time-varying change rate as well.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return