Advanced Search
Article Contents

A Possible Impact of Cooling over the Tibetan Plateau on the Mid-Holocene East Asian Monsoon Climate


doi: 10.1007/s00376-006-0543-y

  • By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East Asian monsoon climate to changes both in orbital forcing and the snow and glaciers over the Tibetan Plateau at the mid-Holocene, about 6000 calendar years before the present (6 kyr BP). With the Earth’s orbital parameters appropriate for the mid-Holocene, the IAP9L-AGCM computed warmer and wetter conditions in boreal summer than for the present day. Under the precondition of continental snow and glacier cover existing over part of the Tibetan Plateau at the mid-Holocene, the authors examined the regional climate response to the Tibetan Plateau cooling. The simulations indicated that climate changes in South Asia and parts of central Asia as well as in East Asia are sensitive to the Tibetan Plateau cooling at the mid-Holocene, showing a significant decrease in precipitation in northern India, northern China and southern Mongolia and an increase in Southeast Asia during boreal summer. The latter seems to correspond to the weakening, southeastward shift of the Asian summer monsoon system resulting from reduced heat contrast between the Eurasian continent and the Pacific and Indian Oceans when a cooling over the Tibetan Plateau was imposed. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for mid-Holocene climate change in the areas highly influenced by the Asian monsoon.
  • [1] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [2] JIANG Dabang, YU Ge, ZHAO Ping, CHEN Xing, LIU Jian, LIU Xiaodong, WANG Shaowu, ZHANG Zhongshi, YU Yongqiang, LI Yuefeng, JIN Liya, XU Ying, JU Lixia, ZHOU Tianjun, YAN Xiaodong, 2015: Paleoclimate Modeling in China: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 250-275.  doi: 10.1007/s00376-014-0002-0
    [3] LIU Huaqiang, SUN Zhaobo, WANG Ju, MIN Jinzhong, 2004: A Modeling Study of the Effects of Anomalous Snow Cover over the Tibetan Plateau upon the South Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 964-975.  doi: 10.1007/BF02915598
    [4] YU Entao, WANG Tao, GAO Yongqi, and XIANG Weiling, 2014: Precipitation Pattern of the Mid-Holocene Simulated by a High-Resolution Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 962-971.  doi: 10.1007/s00376-013-3178-9
    [5] JIANG Dabang, DING Zhongli, Helge DRANGE, GAO Yongqi, 2008: Sensitivity of East Asian Climate to the Progressive Uplift and Expansion of the Tibetan Plateau Under the Mid-Pliocene Boundary Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 709-722.  doi: 10.1007/s00376-008-0709-x
    [6] FENG Jinming, WEI Ting, DONG Wenjie, WU Qizhong, and WANG Yongli, 2014: CMIP5/AMIP GCM Simulations of East Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 836-850.  doi: 10.1007/s00376-013-3131-y
    [7] Gudongze LI, Haoming CHEN, Mingyue XU, Chun ZHAO, Lei ZHONG, Rui LI, Yunfei FU, Yanhong GAO, 2022: Impacts of Topographic Complexity on Modeling Moisture Transport and Precipitation over the Tibetan Plateau in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1151-1166.  doi: 10.1007/s00376-022-1409-7
    [8] Kai Chi WONG, Senfeng LIU, Andrew G. TURNER, Reinhard K. SCHIEMANN, 2018: Different Asian Monsoon Rainfall Responses to Idealized Orography Sensitivity Experiments in the HadGEM3-GA6 and FGOALS-FAMIL Global Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1049-1062.  doi: 10.1007/s00376-018-7269-5
    [9] XIN Xiaoge, ZHOU Tianjun, YU Rucong, 2010: Increased Tibetan Plateau Snow Depth:An Indicator of the Connection between Enhanced Winter NAO and Late-Spring Tropospheric Cooling over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 788-794.  doi: 10.1007/s00376-009-9071-x
    [10] SU Tonghua, XUE Feng*, ZHANG He, 2014: Simulating the Intraseasonal Variation of the East Asian Summer Monsoon by IAP AGCM4.0, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 570-580.  doi: 10.1007/s00376-013-3029-8
    [11] FENG Juan*, CHEN Wen, 2014: Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 344-354.  doi: 10.1007/s00376-013-3118-8
    [12] MAN Wenmin, and ZHOU Tianjun, 2014: Regional-scale Surface Air Temperature and East Asian Summer Monsoon Changes during the Last Millennium Simulated by the FGOALS-gl Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 765-778.  doi: 10.1007/s00376-013-3123-y
    [13] Wang Huijun, 2002: The Mid-Holocene Climate Simulated by a Grid-Point AGCM Coupled with a Biome Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 205-218.  doi: 10.1007/s00376-002-0017-9
    [14] Chen SHENG, Bian HE, Guoxiong WU, Yimin LIU, Shaoyu ZHANG, 2022: Interannual Influences of the Surface Potential Vorticity Forcing over the Tibetan Plateau on East Asian Summer Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1050-1061.  doi: 10.1007/s00376-021-1218-4
    [15] Wang Huijun, 2000: The Seasonal Climate and Low Frequency Oscillation in the Simulated Mid-Holocene Megathermal Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 445-457.  doi: 10.1007/s00376-000-0035-4
    [16] JIANG Dabang, ZHANG Zhongshi, 2006: Paleoclimate Modelling at the Institute of Atmospheric Physics, Chinese Academy of Sciences, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 1040-1049.  doi: 10.1007/s00376-006-1040-z
    [17] Shuo JIA, Jiefan YANG, Hengchi LEI, 2024: Case Studies of the Microphysical and Kinematic Structure of Summer Mesoscale Precipitation Clouds over the Eastern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 97-114.  doi: 10.1007/s00376-023-2303-7
    [18] Li Guo ping, Lu Jinghua, Jin Bingling, Bu Nima, 2001: The Effects of Anomalous Snow Cover of the Tibetan Plateau on the Surface Heating, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1207-1214.  doi: 10.1007/s00376-001-0034-0
    [19] BIAN Jianchun, YAN Renchang, CHEN Hongbin, Lu Daren, Steven T. MASSIE, 2011: Formation of the Summertime Ozone Valley over the Tibetan Plateau: The Asian Summer Monsoon and Air Column Variations, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1318-1325.  doi: 10.1007/s00376-011-0174-9
    [20] Liu Liping, Feng Jinming, Chu Rongzhong, Zhou Yunjun, K. Ueno, 2002: The Diurnal Variation of Precipitation in Monsoon Season in the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 365-378.  doi: 10.1007/s00376-002-0028-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2006
Manuscript revised: 10 July 2006
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Possible Impact of Cooling over the Tibetan Plateau on the Mid-Holocene East Asian Monsoon Climate

  • 1. Center for Arid Environment and Paleoclimate Research, Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000,Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Center for Arid Environment and Paleoclimate Research, Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000,Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East Asian monsoon climate to changes both in orbital forcing and the snow and glaciers over the Tibetan Plateau at the mid-Holocene, about 6000 calendar years before the present (6 kyr BP). With the Earth’s orbital parameters appropriate for the mid-Holocene, the IAP9L-AGCM computed warmer and wetter conditions in boreal summer than for the present day. Under the precondition of continental snow and glacier cover existing over part of the Tibetan Plateau at the mid-Holocene, the authors examined the regional climate response to the Tibetan Plateau cooling. The simulations indicated that climate changes in South Asia and parts of central Asia as well as in East Asia are sensitive to the Tibetan Plateau cooling at the mid-Holocene, showing a significant decrease in precipitation in northern India, northern China and southern Mongolia and an increase in Southeast Asia during boreal summer. The latter seems to correspond to the weakening, southeastward shift of the Asian summer monsoon system resulting from reduced heat contrast between the Eurasian continent and the Pacific and Indian Oceans when a cooling over the Tibetan Plateau was imposed. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for mid-Holocene climate change in the areas highly influenced by the Asian monsoon.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return