Advanced Search
Article Contents

80a-Oscillation of Summer Rainfall over the East Part of China and East-Asian Summer Monsoon


doi: 10.1007/s00376-007-0024-y

  • Relationship between summer rainfall over the east part of China and East-Asian Summer Monsoon (EASM) was studied based on the summer rainfall grade data set from 1470 to 1999 and the rain gauge data set from 1951 to 1999 over the east part of China, and sea level pressure (SLP) data for the period of 1871-2000. A distinct 80a-oscillation of summer rainfall was found over North China (NC), southern part of Northeast China, over the middle and lower reaches of the Yangtze River (YR) and South China (SC). The 80a oscillation of summer rainfall over NC was varied in phase with that over SC, and was out of phase to that along the middle and lower reaches of the Yangtze River. Summer rainfall over NC correlated negatively with the SLP averaged for the area from 105E to 120E, and from 30N to 35N, but positively to that for the area from 120E to 130E, and from 20N to 25N. Therefore, an index of EASM was de fined by the difference of averaged SLP over the two regions. The summer rainfall over NC was greater than normal when the EASM was strong, and while drought occurred along the middle and lower reaches of the Yangtze River. The drought was found over NC, and flood along the middle and lower reaches of the Yangtze River when the EASM was close to normal. Finally, the interdecadal variability of EASM was stu died by using of long term summer rainfall grade data set over NC for the past 530 years.
  • [1] Lin Chunyu, 1985: STABILIZATION OF SUMMER MONSOON IN MIDDLE AND LOWER REACHES OF THE CHANGJIANG RIVER AND SEASONAL TRANSITION OF EAST-ASIAN CIRCULATION PATTERN IN EARLY SUMMER, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 376-384.  doi: 10.1007/BF02677254
    [2] SUN Ying, DING Yihui, 2008: Effects of Intraseasonal Oscillation on the Anomalous East Asian Summer Monsoon During 1999, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 279-296.  doi: 10.1007/s00376-008-0279-y
    [3] Xiao DONG, Feng XUE, 2016: Phase Transition of the Pacific Decadal Oscillation and Decadal Variation of the East Asian Summer Monsoon in the 20th Century, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 330-338.  doi: 10.1007/s00376-015-5130-7
    [4] ZHU Yali, 2009: The Antarctic Oscillation-East Asian Summer Monsoon Connections in NCEP-1 and ERA-40, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 707-716.  doi: 10.1007/s00376-009-8196-2
    [5] Zhu Qiangen, He Jinhai, Wang Panxing, 1986: A STUDY OF CIRCULATION DIFFERENCES BETWEEN EAST-ASIAN AND INDIAN SUMMER MONSOONS WITH THEIR INTERACTION, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 466-477.  doi: 10.1007/BF02657936
    [6] Li Chongyin, Sun Shuqing, Mu Mingquan, 2001: Origin of the TBO-Interaction between Anomalous East-Asian Winter Monsoon and ENSO Cycle, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 554-566.  doi: 10.1007/s00376-001-0044-y
    [7] Congwen ZHU, Boqi LIU, Kang XU, Ning JIANG, Kai LIU, 2021: Diversity of the Coupling Wheels in the East Asian Summer Monsoon on the Interannual Time Scale: Challenge of Summer Rainfall Forecasting in China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 546-554.  doi: 10.1007/s00376-020-0199-z
    [8] HAN Jinping, WANG Huijun, 2007: Interdecadal Variability of the East Asian Summer Monsoon in an AGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 808-818.  doi: 10.1007/s00376-007-0808-0
    [9] Chen Qiying, Yu Yongqiang, Guo Yufu, 1997: Simulation of East Asian Summer Monsoon with IAP CGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 461-472.  doi: 10.1007/s00376-997-0064-3
    [10] Zhiyan ZUO, Renhe ZHANG, 2016: Influence of Soil Moisture in Eastern China on the East Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 151-163.  doi: 10.1007/s00376-015-5024-8
    [11] SUN Li, SHEN Baizhu, GAO Zongting, SUI Bo, Lesheng BAI, Sheng-Hung WANG, AN Gang, LI Jian, 2007: The Impacts of Moisture Transport of East Asian Monsoon on Summer Precipitation in Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 606-618.  doi: 10.1007/s00376-007-0606-8
    [12] JU Jianhua, Lü Junmei, CAO Jie, REN Juzhang, 2005: Possible Impacts of the Arctic Oscillation on the Interdecadal Variation of Summer Monsoon Rainfall in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 39-48.  doi: 10.1007/BF02930868
    [13] CHEN Wen, ZHU Deqin, LIU Huizhi, SUN Shufen, 2009: Land-Air Interaction over Arid/Semi-arid Areas in China and Its Impact on the East Asian Summer Monsoon. Part I: Calibration of the Land Surface Model (BATS) Using Multicriteria Methods, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1088-1098.  doi: 10.1007/s00376-009-8187-3
    [14] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [15] YAN Hongming, YANG Hui, YUAN Yuan, LI Chongyin, 2011: Relationship Between East Asian Winter Monsoon and Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1345-1356.  doi: 10.1007/s00376-011-0014-y
    [16] WANG Xin, ZHOU Wen, LI Chongyin, WANG Dongxiao, 2012: Effects of the East Asian Summer Monsoon on Tropical Cyclone Genesis over the South China Sea on an Interdecadal Time Scale, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 249-262.  doi: 10.1007/s00376-011-1080-x
    [17] LIN Zhongda, 2014: Intercomparison of the Impacts of Four Summer Teleconnections over Eurasia on East Asian Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1366-1376.  doi: 10.1007/s00376-014-3171-y
    [18] FENG Juan*, CHEN Wen, 2014: Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 344-354.  doi: 10.1007/s00376-013-3118-8
    [19] Zhang Renhe, 2001: Relations of Water Vapor Transport from Indian Monsoon with That over East Asia and the Summer Rainfall in China, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1005-1017.
    [20] Long WEN, Wei ZHANG, Cha YANG, Gang CHEN, Yajun HU, Hao ZHANG, 2023: Near Homogeneous Microphysics of the Record-Breaking 2020 Summer Monsoon Rainfall during the Northward Migration over East China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1783-1798.  doi: 10.1007/s00376-023-2242-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2001
Manuscript revised: 10 September 2001
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

80a-Oscillation of Summer Rainfall over the East Part of China and East-Asian Summer Monsoon

  • 1. Department of Geophysics, Peking University, Beijing 100871,Department of Geophysics, Peking University, Beijing 100871

Abstract: Relationship between summer rainfall over the east part of China and East-Asian Summer Monsoon (EASM) was studied based on the summer rainfall grade data set from 1470 to 1999 and the rain gauge data set from 1951 to 1999 over the east part of China, and sea level pressure (SLP) data for the period of 1871-2000. A distinct 80a-oscillation of summer rainfall was found over North China (NC), southern part of Northeast China, over the middle and lower reaches of the Yangtze River (YR) and South China (SC). The 80a oscillation of summer rainfall over NC was varied in phase with that over SC, and was out of phase to that along the middle and lower reaches of the Yangtze River. Summer rainfall over NC correlated negatively with the SLP averaged for the area from 105E to 120E, and from 30N to 35N, but positively to that for the area from 120E to 130E, and from 20N to 25N. Therefore, an index of EASM was de fined by the difference of averaged SLP over the two regions. The summer rainfall over NC was greater than normal when the EASM was strong, and while drought occurred along the middle and lower reaches of the Yangtze River. The drought was found over NC, and flood along the middle and lower reaches of the Yangtze River when the EASM was close to normal. Finally, the interdecadal variability of EASM was stu died by using of long term summer rainfall grade data set over NC for the past 530 years.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return