Advanced Search
Article Contents

Principle of Cross Coupling Between Vertical Heat Turbulent Transport and Vertical Velocity and Determination of Cross Coupling Coefficient


doi: 10.1007/s00376-007-0089-7

  • It has been proved that there exists a cross coupling between vertical heat turbulent transport and vertical velocity by using linear thermodynamics. This result asserts that the vertical component of heat turbulent transport flux is composed of both the transport of the vertical potential temperature gradient and the coupling transport of the vertical velocity. In this paper, the coupling effect of vertical velocity on vertical heat turbulent transportation is validated by using observed data from the atmospheric boundary layer to determine cross coupling coefficients, and a series of significant properties of turbulent transportation are opened out. These properties indicate that the cross coupling coefficient is a logarithm function of the dimensionless vertical velocity and dimensionless height, and is not only related to the friction velocity u*, but also to the coupling roughness height zW0 and the coupling temperature TW0 of the vertical velocity. In addition, the function relations suggest that only when the vertical velocity magnitude conforms to the limitation |W/u*|≠1, and is above the level zW0, then the vertical velocity leads to the cross coupling effect on the vertical heat turbulent transport flux. The cross coupling theory and experimental results provide a challenge to the traditional turbulent K closure theory and the Monin-Obukhov similarity theory.
  • [1] HU Yinqiao, ZUO Hongchao, 2003: The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 794-798.  doi: 10.1007/BF02915404
    [2] Hu Yinqiao, 2002: Application of Linear Thermodynamics to the Atmospheric System.Part Ⅱ: Exemplification of Linear Phenomenological Relations in the Atmospheric System, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 767-776.  doi: 10.1007/s00376-002-0043-7
    [3] ZHOU Li, XU Xiangde, DING Guoan, ZHOU Mingyu, CHENG Xinghong, 2005: Diurnal Variations of Air Pollution and Atmospheric Boundary Layer Structure in Beijing During Winter 2000/2001, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 126-132.  doi: 10.1007/BF02930876
    [4] LIU Shuhua, YUE Xu, HU Fei, LIU Huizhi, 2004: Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Simulate the Interaction between Land Surface Processes and Atmospheric Boundary Layer in Semi-Arid Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 245-259.  doi: 10.1007/BF02915711
    [5] Hu Yinqiao, 2002: Application of Linear Thermodynamics to the Atmospheric System. Part Ⅰ: Linear Phenomenological Relations and Thermodynamic Property of the Atmospheric System, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 448-458.  doi: 10.1007/s00376-002-0078-9
    [6] Liu Shikuo, Huang Wei, Rong Pingping, 1992: Effects of Turbulent Dispersion of Atmospheric Balance Motions of Planetary Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 147-156.  doi: 10.1007/BF02657505
    [7] SUN Jianning, JIANG Weimei, CHEN Ziyun, YUAN Renmin, 2005: A Laboratory Study of the Turbulent Velocity Characteristics in the Convective Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 770-780.  doi: 10.1007/BF02918721
    [8] Xu Yinzi, 1988: THE WIND IN THE BAROCLINIC BOUNDARY LAYER WITH THREE SUBLAYERS INCORPORATING THE WEAK NON-LINEAR EFFECT, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 483-497.  doi: 10.1007/BF02656793
    [9] Sun-Hee SHIN, Kyung-Ja HA, 2009: Implementation of Turbulent Mixing over a Stratocumulus-Topped Boundary Layer and Its Impact in a GCM, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 995-1004.  doi: 10.1007/s00376-009-8145-0
    [10] Zhu Ping, Xu Xiaojin, Li Xingsheng, 1992: A Numerical Study of Second-Order Turbulent Moments in the Stably Stratified Nocturnal Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 201-212.  doi: 10.1007/BF02657510
    [11] Yu SHI, Qingcun ZENG, Fei HU, Weichen DING, Zhe ZHANG, Kang ZHANG, Lei LIU, 2023: Different Turbulent Regimes and Vertical Turbulence Structures of the Urban Nocturnal Stable Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-022-2198-8
    [12] Zhang Fengying, Ma Xialin, 1986: CALCULATION OF UPDATED COEFFICIENTS FOR ATMOSPHERIC TEMPERATURE RETRIEVAL, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 150-161.  doi: 10.1007/BF02682549
    [13] Zhu Cuijuan, Li Xingsheng, Ye Zhuojia, 1984: AN ANALYSIS OF THE STRUCTURE OF THUNDERSTORM IN THE ATMOSPHERIC BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 105-118.  doi: 10.1007/BF03187621
    [14] Zhao Bolin, Zhen Jinming, Hu Chengda, Du Jinlin, Zhu Yuanjing, Zhang Chengxiang, 1992: Study on Clouds and Marine Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 383-396.  doi: 10.1007/BF02677072
    [15] P.C. Chu, Roland W. Garwood, Jr., 1990: Thermodynamic Feedback between Clouds and the Ocean Surface Mixed Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 1-10.  doi: 10.1007/BF02919163
    [16] You Ronggao, Hong Zhongxiang, Lu Weixiu, Zhao Deshan, Kong Qinxin, Zhu Wenqin, 1985: VARIATIONS OF ATMOSPHERIC AEROSOL CONCENTRATION AND SIZE DISTRIBUTION WITH TIME AND ALTITUDE IN THE BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 243-250.  doi: 10.1007/BF03179756
    [17] Li Xin, Hu Fei, Liu Gang, Hong Zhongxiang, 2001: Multi-scale Fractal Characteristics of Atmospheric Boundary-Layer Turbulence, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 787-792.
    [18] MA Yaoming, Massimo MENENTI, Reinder FEDDES, 2010: Parameterization of Heat Fluxes at Heterogeneous Surfaces by Integrating Satellite Measurements with Surface Layer and Atmospheric Boundary Layer Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 328-336.  doi: 10.1007/s00376-009-9024-4
    [19] Liu Shikuo, Peng Weihong, Huang Feng, Chi Dongyan, 2002: Effects of Turbulent Dispersion on the Wind Speed Profile in the Surface Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 794-806.  doi: 10.1007/s00376-002-0045-5
    [20] Zeng Zongyong, Ma Chengsheng, Liu Xiaochun, Ling Huiqin, 1989: An Analysis of the Turbulent Structure in the Unstable Surface Layer nearby a Shelter Belt, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 493-500.  doi: 10.1007/BF02659083

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2007
Manuscript revised: 10 January 2007
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Principle of Cross Coupling Between Vertical Heat Turbulent Transport and Vertical Velocity and Determination of Cross Coupling Coefficient

  • 1. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000; Cold and Arid Regions Environment and Engineering Institute, Chinese Academy of Sciences, Gansu Province Key Laboratory of Arid Climatic Change and Reducing Disaster, Lanzhou 730000; Department of Environment and Resource, Gansu Agriculture University, Lanzhou 730060,College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000; Cold and Arid Regions Environment and Engineering Institute, Chinese Academy of Sciences, Gansu Province Key Laboratory of Arid Climatic Change and Reducing Disaster, Lanzhou 730000,College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000

Abstract: It has been proved that there exists a cross coupling between vertical heat turbulent transport and vertical velocity by using linear thermodynamics. This result asserts that the vertical component of heat turbulent transport flux is composed of both the transport of the vertical potential temperature gradient and the coupling transport of the vertical velocity. In this paper, the coupling effect of vertical velocity on vertical heat turbulent transportation is validated by using observed data from the atmospheric boundary layer to determine cross coupling coefficients, and a series of significant properties of turbulent transportation are opened out. These properties indicate that the cross coupling coefficient is a logarithm function of the dimensionless vertical velocity and dimensionless height, and is not only related to the friction velocity u*, but also to the coupling roughness height zW0 and the coupling temperature TW0 of the vertical velocity. In addition, the function relations suggest that only when the vertical velocity magnitude conforms to the limitation |W/u*|≠1, and is above the level zW0, then the vertical velocity leads to the cross coupling effect on the vertical heat turbulent transport flux. The cross coupling theory and experimental results provide a challenge to the traditional turbulent K closure theory and the Monin-Obukhov similarity theory.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return