Description and Application of a Model for Simulating Regional Nitrogen Cycling and Calculating Nitrogen Flux
-
-
Abstract
A regional nitrogen cycle model, named IAP-N, was designed for simulating regional nitrogen (N) cycling and calculating N fluxes flowing among cultivated soils, crops, and livestock, as well as human, atmospheric and other systems. The conceptual structure and calculation methods and procedures of this model are described in detail. All equations of the model are presented. In addition, definitions of all the involved variables and parameters are given. An application of the model in China at the national scale is presented. In this example, annual surpluses of consumed synthetic N fertilizer; emissions of nitrous oxide (N2O), ammonia (NH3) and nitrogen oxide (NOx); N loss from agricultural lands due to leaching and runoff; and sources and sinks of anthropogenic reactive N (Nr) were estimated for the period 1961--2004. The model estimates show that surpluses of N fertilizer started to occur in the mid 1990s and amounted to 5.7 Tg N yr-1 in the early 2000s. N2O emissions related to agriculture were estimated as 0.69 Tg N yr-1 in 2004, of which 58% was released directly from N added to agricultural soils. Total NH3 and NOx emissions in 2004 amounted to 4.7 and 4.9 Tg N yr-1, respectively. About 3.9 Tg N yr-1 of N was estimated to have flowed out of the cultivated soil layer in 2004, which accounted for 33% of applied synthetic N fertilizer. Anthropogenic Nr sources changed from 2.8 (1961) to 28.1 Tg N yr-1 (2004), while removal (sinks) changed from to 2.1 to 8.4 Tg N yr-1. The ratio of anthropogenic Nr sources to sinks was only 1.4 in 1961 but 3.3 in 2004. Further development of the IAP-N model is suggested to focus upon: (a) inter-comparison with other regional N models; (b) overcoming the limitations of the current model version, such as adaptation to other regions, high-resolution database, and so on; and (c) developing the capacity to estimate the safe threshold of anthropogenic Nr source to sink ratios.
-
-