Advanced Search
Article Contents

Trends in Graded Precipitation in China from 1961 to 2000


doi: 10.1007/s00376-008-0267-2

  • Daily precipitation rates observed at 576 stations in China from 1961 to 2000 were classified into six grades of intensity, including trace (no amount), slight (≤1 mm d-1), small, large, heavy, and very heavy. The last four grades together constitute the so called effective precipitation (>1 mm d-1). The spatial distribution and temporal trend of the graded precipitation days are examined. A decreasing trend in trace precipitation days is observed for the whole of China, except at several sites in the south of the middle section of the Yangtze River, while a decreasing trend in slight precipitation days only appears in eastern China. The decreasing trend and interannual variability of trace precipitation days is consistent with the warming trend and corresponding temperature variability in China for the same period, indicating a possible role played by increased surface air temperature in cloud formation processes. For the effective precipitation days, a decreasing trend is observed along the Yellow River valley and for the middle reaches of the Yangtze River and Southwest China, while an increasing trend is found for Xinjiang, the eastern Tibetan Plateau, Northeast China and Southeast China. The decreasing trend of effective precipitation days for the middle-lower Yellow River valley and the increasing trend for the lower Yangtze River valley are most likely linked to anomalous monsoon circulation in East China. The most important contributor to the trend in effective precipitation depends upon the region concerned.
  • [1] SONG Lianchun, A. J. CANNON, P. H. WHITFIELD, 2007: Changes in Seasonal Patterns of Temperature and Precipitation in China During 1971--2000, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 459-473.  doi: 10.1007/s00376-007-0459-1
    [2] ZHANG Huan, ZHAI Panmao, 2011: Temporal and Spatial Characteristics of Extreme Hourly Precipitation over Eastern China in the Warm Season, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1177-1183.  doi: 10.1007/s00376-011-0020-0
    [3] PAN Lunxiang, QIE Xiushu, WANG Dongfang, , 2014: Lightning Activity and Its Relation to the Intensity of Typhoons over the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 581-592.  doi: 10.1007/s00376-013-3115-y
    [4] Athanassios A. ARGIRIOU, Zhen LI, Vasileios ARMAOS, Anna MAMARA, Yingling SHI, Zhongwei YAN, 2023: Homogenised Monthly and Daily Temperature and Precipitation Time Series in China and Greece since 1960, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-022-2246-4
    [5] WANG Shaowu, ZHU Jinhong, CAI Jingning, 2004: Interdecadal Variability of Temperature and Precipitation in China since 1880, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 307-313.  doi: 10.1007/BF02915560
    [6] GE Quansheng, WANG Shaowu, WEN Xinyu, Caiming SHEN, HAO Zhixin, 2007: Temperature and Precipitation Changes in China During the HoloceneTemperature and Precipitation Changes in China During the Holocene, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1024-1036.  doi: 10.1007/s00376-007-1024-7
    [7] Deliang CHEN, Tinghai OU, Lebing GONG, Chong-Yu XU, LI Weijing, Chang-Hoi Ho, QIAN Weihong, 2010: Spatial Interpolation of Daily Precipitation in China: 1951--2005, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1221-1232.  doi: 10.1007/s00376-010-9151-y
    [8] Jianping HUANG, Jieru MA, Xiaodan GUAN, Yue LI, Yongli HE, 2019: Progress in Semi-arid Climate Change Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 922-937.  doi: 10.1007/s00376-018-8200-9
    [9] Jianjun Xu, Johnny C. L. Chan, 2002: Interannual and Interdecadal Variability of Winter Precipitation over China in Relation to Global Sea Level Pressure Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 914-926.  doi: 10.1007/s00376-002-0055-3
    [10] TIAN Di, GUO Yan*, DONG Wenjie, 2015: Future Changes and Uncertainties in Temperature and Precipitation over China Based on CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 487-496.  doi: 10.1007/s00376-014-4102-7
    [11] Ying XU, Xuejie GAO, Filippo GIORGI, Botao ZHOU, Ying SHI, Jie WU, Yongxiang ZHANG, 2018: Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50-yr Return Values and Periods Based on a CMIP5 Ensemble, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 376-388.  doi: 10.1007/s00376-017-6269-1
    [12] JIANG Dabang, YU Ge, ZHAO Ping, CHEN Xing, LIU Jian, LIU Xiaodong, WANG Shaowu, ZHANG Zhongshi, YU Yongqiang, LI Yuefeng, JIN Liya, XU Ying, JU Lixia, ZHOU Tianjun, YAN Xiaodong, 2015: Paleoclimate Modeling in China: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 250-275.  doi: 10.1007/s00376-014-0002-0
    [13] GUO Xueliang, FU Danhong, LI Xingyu, HU Zhaoxia, LEI Henchi, XIAO Hui, HONG Yanchao, 2015: Advances in Cloud Physics and Weather Modification in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 230-249.  doi: 10.1007/s00376-014-0006-9
    [14] YANG Shili, FENG Jinming, DONG Wenjie, CHOU Jieming, 2014: Analyses of Extreme Climate Events over China Based on CMIP5 Historical and Future Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1209-1220.  doi: 10.1007/s00376-014-3119-2
    [15] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [16] WANG Xiaoling, REN Fumin, WANG Yongmei, LI Weijing, 2008: Influences of Tropical Cyclones on China During 1965--2004, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 417-426.  doi: 10.1007/s00376-008-0417-6
    [17] Guwei ZHANG, Gang ZENG, Xiaoye YANG, Zhihong JIANG, 2021: Future Changes in Extreme High Temperature over China at 1.5°C–5°C Global Warming Based on CMIP6 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 253-267.  doi: 10.1007/s00376-020-0182-8
    [18] Zhe-Min TAN, Lili LEI, Yuqing WANG, Yinglong XU, Yi ZHANG, 2022: Typhoon Track, Intensity, and Structure: From Theory to Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1789-1799.  doi: 10.1007/s00376-022-2212-1
    [19] Chenxi WANG, Zhihua ZENG, Ming YING, 2020: Uncertainty in Tropical Cyclone Intensity Predictions due to Uncertainty in Initial Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 278-290.  doi: 10.1007/s00376-019-9126-6
    [20] Shuai WANG, Ralf TOUMI, 2018: Reduced Sensitivity of Tropical Cyclone Intensity and Size to Sea Surface Temperature in a Radiative-Convective Equilibrium Environment, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 981-993.  doi: 10.1007/s00376-018-7277-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2008
Manuscript revised: 10 March 2008
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Trends in Graded Precipitation in China from 1961 to 2000

  • 1. Monsoon and Environment Research Group, School of Physics, Peking University, Beijing 100871;Monsoon and Environment Research Group, School of Physics, Peking University, Beijing 100871;Monsoon and Environment Research Group, School of Physics, Peking University, Beijing 100871;Earth Sciences Centre, Gothenburg University, Box 460, 405 30 Gothenburg, Sweden;Laboratory for Climate Studies/National Climate Center, China Meteorological Administration, No. 46 Zhongguancun Nandajie, Beijing 100081

Abstract: Daily precipitation rates observed at 576 stations in China from 1961 to 2000 were classified into six grades of intensity, including trace (no amount), slight (≤1 mm d-1), small, large, heavy, and very heavy. The last four grades together constitute the so called effective precipitation (>1 mm d-1). The spatial distribution and temporal trend of the graded precipitation days are examined. A decreasing trend in trace precipitation days is observed for the whole of China, except at several sites in the south of the middle section of the Yangtze River, while a decreasing trend in slight precipitation days only appears in eastern China. The decreasing trend and interannual variability of trace precipitation days is consistent with the warming trend and corresponding temperature variability in China for the same period, indicating a possible role played by increased surface air temperature in cloud formation processes. For the effective precipitation days, a decreasing trend is observed along the Yellow River valley and for the middle reaches of the Yangtze River and Southwest China, while an increasing trend is found for Xinjiang, the eastern Tibetan Plateau, Northeast China and Southeast China. The decreasing trend of effective precipitation days for the middle-lower Yellow River valley and the increasing trend for the lower Yangtze River valley are most likely linked to anomalous monsoon circulation in East China. The most important contributor to the trend in effective precipitation depends upon the region concerned.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return