Advanced Search
Article Contents

Mesoscale Predictability of Mei-yu Heavy Rainfall


doi: 10.1007/s00376-009-0438-9

  • Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on not only moist convection but also the flow regime. In this study, the mesoscale predictability and error growth of mei-yu heavy rainfall is investigated by simulating a particular precipitation event along the mei-yu front on 4--6 July 2003 in eastern China. Due to the multi-scale character of the mei-yu front and scale interactions, the error growth of mei-yu heavy rainfall forecasts is markedly different from that in middle-latitude moist baroclinic systems. The optimal growth of the errors has a relatively wide spectrum, though it gradually migrates with time from small scale to mesoscale. During the whole period of this heavy rainfall event, the error growth has three different stages, which similar to the evolution of 6-hour accumulated precipitation. Multi-step error growth manifests as an increase of the amplitude of errors, the horizontal scale of the errors, or both. The vertical profile of forecast errors in the developing convective system indicates two peaks, which correspond with convective instability and the moist physics. The error growth for the mei-yu heavy rainfall is concentrated inside the mei-yu front, and related to moist convective instability and scale interaction.
  • [1] Xiaoran ZHUANG, Jinzhong MIN, Liu ZHANG, Shizhang WANG, Naigeng WU, Haonan ZHU, 2020: Insights into Convective-scale Predictability in East China: Error Growth Dynamics and Associated Impact on Precipitation of Warm-Season Convective Events, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 893-911.  doi: 10.1007/s00376-020-9269-5
    [2] BEI Naifang, Fuqing ZHANG, 2014: Mesoscale Predictability of Moist Baroclinic Waves: Variable and Scale-dependent Error Growth, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 995-1008.  doi: 10.1007/s00376-014-3191-7
    [3] YU Liang, MU Mu, Yanshan YU, , 2014: Role of Parameter Errors in the Spring Predictability Barrier for ENSO Events in the Zebiak-Cane Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 647-656.  doi: 10.1007/s00376-013-3058-3
    [4] DUAN Wansuo, ZHANG Rui, 2010: Is Model Parameter Error Related to a Significant Spring Predictability Barrier for El Nino events? Results from a Theoretical Model, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1003-1013.  doi: 10.1007/s00376-009-9166-4
    [5] ZHU Benlu, LIN Wantao, ZHANG Yun, 2010: Analysis Study on Perturbation Energy and Predictability of Heavy Precipitation in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 382-392.  doi: 10.1007/s00376-009-8164-x
    [6] LI Shan, RONG Xingyao, LIU Yun, LIU Zhengyu, Klaus FRAEDRICH, 2013: Dynamic Analogue Initialization for Ensemble Forecasting, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1406-1420.  doi: 10.1007/s00376-012-2244-z
    [7] Jiawei YAO, Wansuo DUAN, Xiaohao QIN, 2021: Which Features of the SST Forcing Error Most Likely Disturb the Simulated Intensity of Tropical Cyclones?, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 581-602.  doi: 10.1007/s00376-020-0073-z
    [8] Yujie WU, Wansuo DUAN, 2018: Impact of SST Anomaly Events over the Kuroshio-Oyashio Extension on the "Summer Prediction Barrier", ADVANCES IN ATMOSPHERIC SCIENCES, 35, 397-409.  doi: 10.1007/s00376-017-6322-0
    [9] ZHAI Guoqing, ZHOU Lingli, WANG Zhi, 2007: Analysis of a Group of Weak Small-Scale Vortexes in the Planetary Boundary Layer in the Mei-yu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 399-408.  doi: 10.1007/s00376-007-0399-9
    [10] CHU Kekuan, TAN Zhemin, Ming XUE, 2007: Impact of 4DVAR Assimilation of Rainfall Data on the Simulation of Mesoscale Precipitation Systems in a Mei-yu Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 281-300.  doi: 10.1007/s00376-007-0281-9
    [11] Zipeng YUAN, Xiaoyong ZHUGE, Yuan WANG, 2020: The Forced Secondary Circulation of the Mei-yu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 766-780.  doi: 10.1007/s00376-020-9177-8
    [12] ZHANG Meng, NI Yunqi, ZHANG Fuqing, 2007: Variational Assimilation of GPS Precipitable Water Vapor and Hourly Rainfall Observations for a Meso- Scale Heavy Precipitation Event During the 2002 Mei-Yu Season, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 509-526.  doi: 10.1007/s00376-007-0509-8
    [13] CHU Ke-Kuan, TAN Zhe-Min, 2010: Mesoscale Moist Adjoint Sensitivity Study of a Mei-yu Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1415-1424.  doi: 10.1007/s00376-010-9213-1
    [14] SUN Jianhua, ZHAO Sixiong, XU Guangkuo, MENG Qingtao, 2010: Study on a Mesoscale Convective Vortex Causing Heavy Rainfall during the Mei-yu Season in 2003, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1193-1209.  doi: 10.1007/s00376-009-9156-6
    [15] Ambrogio VOLONTÉ, Mark MUETZELFELDT, Reinhard SCHIEMANN, Andrew G. TURNER, Nicholas KLINGAMAN, 2021: Magnitude, Scale, and Dynamics of the 2020 Mei-yu Rains and Floods over China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2082-2096.  doi: 10.1007/s00376-021-1085-z
    [16] YANG Shuai, GAO Shouting, Chungu LU, 2015: Investigation of the Mei-yu Front Using a New Deformation Frontogenesis Function, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 635-647.  doi: 10.1007/s00376-014-4147-7
    [17] WANG Yunfeng, WANG Bin, HAN Yueqi, ZHU Min, HOU Zhiming, ZHOU Yi, LIU Yudi, KOU Zheng, 2004: Variational Data Assimilation Experiments of Mei-Yu Front Rainstorms in China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 587-596.  doi: 10.1007/BF02915726
    [18] Kelvin S. NG, Gregor C. LECKEBUSCH, Kevin I. HODGES, 2022: A Causality-guided Statistical Approach for Modeling Extreme Mei-yu Rainfall Based on Known Large-scale Modes—A Pilot Study, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1925-1940.  doi: 10.1007/s00376-022-1348-3
    [19] Tingting LI, Xiaofan LI, 2016: Barotropic Processes Associated with the Development of the Mei-yu Precipitation System, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 593-598.  doi: 10.1007/s00376-015-5146-z
    [20] CHEN Lianshou, LUO Zhexian, 2004: Interaction of Typhoon and Mesoscale Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 515-528.  doi: 10.1007/BF02915719

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2009
Manuscript revised: 10 May 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Mesoscale Predictability of Mei-yu Heavy Rainfall

  • 1. Key Lab of Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, Nanjing 210093;Key Lab of Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, Nanjing 210093

Abstract: Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on not only moist convection but also the flow regime. In this study, the mesoscale predictability and error growth of mei-yu heavy rainfall is investigated by simulating a particular precipitation event along the mei-yu front on 4--6 July 2003 in eastern China. Due to the multi-scale character of the mei-yu front and scale interactions, the error growth of mei-yu heavy rainfall forecasts is markedly different from that in middle-latitude moist baroclinic systems. The optimal growth of the errors has a relatively wide spectrum, though it gradually migrates with time from small scale to mesoscale. During the whole period of this heavy rainfall event, the error growth has three different stages, which similar to the evolution of 6-hour accumulated precipitation. Multi-step error growth manifests as an increase of the amplitude of errors, the horizontal scale of the errors, or both. The vertical profile of forecast errors in the developing convective system indicates two peaks, which correspond with convective instability and the moist physics. The error growth for the mei-yu heavy rainfall is concentrated inside the mei-yu front, and related to moist convective instability and scale interaction.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return