Advanced Search
Article Contents

Variations in Extratropical Cyclone Activity in Northern East Asia


doi: 10.1007/s00376-009-0471-8

  • Based on an improved objective cyclone detection and tracking algorithm, decadal variations in extratropical cyclones in northern East Asia are studied by using the ECMWF 40 Year Reanalysis (ERA-40) sea-level pressure data during 1958--2001. The results reveal that extratropical cyclone activity has displayed clear seasonal, interannual, and decadal variability in northern East Asia. Spring is the season when cyclones occur most frequently. The spatial distribution of extratropical cyclones shows that cyclones occur mainly within the 40o--50oN latitudinal band in northern East Asia, and the most frequent region of occurrence is in Mongolia. Furthermore, this study also reveals the fact that the frequency of extratropical cyclones has significantly decreased in the lower latitude region of northern East Asia during 1958--2001, but decadal variability has dominated in higher latitude bands, with frequent cyclone genesis. The intensity of extratropical cyclones has decreased on an annual and seasonal basis. Variation of the annual number of cyclones in northern East Asia is associated with the mean intensity of the baroclinic frontal zone, which is influenced by climate warming in the higher latitudes. Moreover, the dipole structure of extratopical cyclone change, with increases in the north and decreases in the southern part of northern East Asia, is related to the northward movement of the baroclinic frontal zone on either side of 110oE.
  • [1] ZHU Yali, 2009: The Antarctic Oscillation-East Asian Summer Monsoon Connections in NCEP-1 and ERA-40, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 707-716.  doi: 10.1007/s00376-009-8196-2
    [2] Zuohao Cao, G.W.K. Moore, 1998: A Diagnostic Study of Moist Potential Vorticity Generation in an Extratropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 152-166.  doi: 10.1007/s00376-998-0036-2
    [3] ZHANG Guo, ZHOU Guangsheng, CHEN Fei, WANG Yu, , 2014: Analysis of the Variability of Canopy Resistance over a Desert Steppe Site in Inner Mongolia, China, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 681-692.  doi: 10.1007/s00376-013-3071-6
    [4] XU Ying, GAO Xuejie, F. GIORGI, 2009: Regional Variability of Climate Change Hot-spots in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 783-792.  doi: 10.1007/s00376-009-9034-2
    [5] Jianjun Xu, Johnny C. L. Chan, 2002: Interannual and Interdecadal Variability of Winter Precipitation over China in Relation to Global Sea Level Pressure Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 914-926.  doi: 10.1007/s00376-002-0055-3
    [6] FENG Junqiao, HU Dunxin, YU Lejiang, 2012: Low-Frequency Coupled Atmosphere--Ocean Variability in the Southern Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 544-560.  doi: 10.1007/s00376-011-1096-2
    [7] WANG Jia, ZHI Xiefei, and CHEN Yuwen, 2013: Probabilistic multimodel ensemble prediction of decadal variability of East Asian surface air temperature based on IPCC-AR5 near-term climate simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1129-1142.  doi: 10.1007/s00376-012-2182-9
    [8] FU Weiwei, 2012: Altimetric Data Assimilation by EnOI and 3DVAR in a Tropical Pacific Model: Impact on the Simulation of Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 823-837.  doi: 10.1007/s00376-011-1022-7
    [9] Huqiang ZHANG, LI Yaohui, GAO Xuejie, 2009: Potential Impacts of Land-Use on Climate Variability and Extremes, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 840-854.  doi: 10.1007/s00376-009-8047-1
    [10] LI Jiawei, HAN Zhiwei, 2012: A Modeling Study of Seasonal Variation of Atmospheric Aerosols over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 101-117.  doi: 10.1007/s00376-011-0234-1
    [11] Wang Zifa, Huang Meiyuan, He Dongyang, Xu Huaying, Zhou Ling, 1996: Sulfur Distribution and Transport Studies in East Asia Using Eulerian Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 399-409.  doi: 10.1007/BF02656856
    [12] Zhenxi ZHANG, Wen ZHOU, Mark WENIG, Liangui YANG, 2017: Impact of Long-range Desert Dust Transport on Hydrometeor Formation over Coastal East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 101-115.  doi: 10.1007/s00376-016-6157-0
    [13] Fei WANG, Hua ZHANG, Qi CHEN, Min ZHAO, Ting YOU, 2020: Analysis of Short-term Cloud Feedback in East Asia Using Cloud Radiative Kernels, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1007-1018.  doi: 10.1007/s00376-020-9281-9
    [14] Sining LING, Riyu LU, Hao LIU, Yali YANG, 2023: Interannual Meridional Displacement of the Upper-Tropospheric Westerly Jet over Western East Asia in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1298-1308.  doi: 10.1007/s00376-022-2279-8
    [15] Akio KITOH, Masahiro HOSAKA, Yukimasa ADACHI, Kenji KAMIGUCHI, 2005: Future Projections of Precipitation Characteristics in East Asia Simulated by the MRI CGCM2, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 467-478.  doi: 10.1007/BF02918481
    [16] Xiaohan LI, Yi ZHANG, Yanluan LIN, Xindong PENG, Baiquan ZHOU, Panmao ZHAI, Jian LI, 2023: Impact of Revised Trigger and Closure of the Double-Plume Convective Parameterization on Precipitation Simulations over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1225-1243.  doi: 10.1007/s00376-022-2225-9
    [17] Tae-Won PARK, Jee-Hoon JEONG, Chang-Hoi HO, Seong-Joong KIM, 2008: Characteristics of Atmospheric Circulation Associated with Cold Surge Occurrences in East Asia: A Case Study During 2005/06 Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 791-804.  doi: 10.1007/s00376-008-0791-0
    [18] Yan HUANG, William L. CHAMEIDES, Qian TAN, Robert E. DICKINSON, 2008: Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 946-959.  doi: 10.1007/s00376-008-0946-z
    [19] GAO Lijie, ZHANG Meigen, HAN Zhiwei, 2009: Model Analysis of Seasonal Variations in Tropospheric Ozone and Carbon Monoxide over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 312-318.  doi: 10.1007/s00376-009-0312-9
    [20] LIU Qianxia, ZHANG Meigen, WANG Bin, 2005: Simulation of Tropospheric Ozone with MOZART-2:An Evaluation Study over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 585-594.  doi: 10.1007/BF02918490

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2009
Manuscript revised: 10 May 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Variations in Extratropical Cyclone Activity in Northern East Asia

  • 1. Meteorological Observatory in Henan Province, Zhengzhou 450003;Chinese Academy of Meteorological Sciences, Beijing 100081;Chinese Academy of Meteorological Sciences, Beijing 100081

Abstract: Based on an improved objective cyclone detection and tracking algorithm, decadal variations in extratropical cyclones in northern East Asia are studied by using the ECMWF 40 Year Reanalysis (ERA-40) sea-level pressure data during 1958--2001. The results reveal that extratropical cyclone activity has displayed clear seasonal, interannual, and decadal variability in northern East Asia. Spring is the season when cyclones occur most frequently. The spatial distribution of extratropical cyclones shows that cyclones occur mainly within the 40o--50oN latitudinal band in northern East Asia, and the most frequent region of occurrence is in Mongolia. Furthermore, this study also reveals the fact that the frequency of extratropical cyclones has significantly decreased in the lower latitude region of northern East Asia during 1958--2001, but decadal variability has dominated in higher latitude bands, with frequent cyclone genesis. The intensity of extratropical cyclones has decreased on an annual and seasonal basis. Variation of the annual number of cyclones in northern East Asia is associated with the mean intensity of the baroclinic frontal zone, which is influenced by climate warming in the higher latitudes. Moreover, the dipole structure of extratopical cyclone change, with increases in the north and decreases in the southern part of northern East Asia, is related to the northward movement of the baroclinic frontal zone on either side of 110oE.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return