Advanced Search
Article Contents

Seasonal Patterns of Soil Respiration in Three Types of Communities along Grass-Desert Shrub Transition in Inner Mongolia, China


doi: 10.1007/s00376-009-0503-4

  • The seasonal dynamics of soil respiration in steppe (S. bungeana), desert shrub (A. ordosica), and shrub-perennial (A. ordosica + C. komarovii) communities were investigated during the growth season (May to October) in 2006; their environmental driving factors were also analyzed. In the three communities, soil respiration showed similar characteristics in their growth seasons, with peak respiration values in July and August owing to suitable temperature and soil moisture conditions during this period. Meanwhile, changes in soil respiration were greatly influenced by temperatures and surface soil moistures. Soil water content at a depth of 0 to 10 cm was identified as the key environmental factor affecting the variation in soil respiration in the steppe. In contrast, in desert shrub and shrub-perennial communities, the dynamics of soil respiration was significantly influenced by air temperature. Similarly, the various responses of soil respiration to environmental factors may be attributed to the different soil textures and distribution patterns of plant roots. In desert ecosystems, precipitation results in soil respiration pulses. Soil carbon dioxide (CO2) effluxes greatly increased after rainfall rewetting in all of the ecosystems under study. However, the precipitation pulse effect differed across the ecosystem. We propose that this may be a result of a reverse effect from the soil texture.
  • [1] QI Yuchun, DONG Yunshe, Manfred DOMROES, GENG Yuanbo, LIU Lixin, LIU Xingren, 2006: Comparison of CO2 Effluxes and Their Driving Factors Between Two Temperate Steppes in Inner Mongolia, China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 726-736.  doi: 10.1007/s00376-006-0726-6
    [2] GUAN Xiaodan, HUANG Jianping, GUO Ni, BI Jianrong, WANG Guoyin, 2009: Variability of Soil Moisture and Its Relationship with Surface Albedo and Soil Thermal Parameters over the Loess Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 692-700.  doi: 10.1007/s00376-009-8198-0
    [3] Siqiong LUO, Zihang CHEN, Jingyuan WANG, Tonghua WU, Yao XIAO, Yongping QIAO, 2024: Impact of Initial Soil Conditions on Soil Hydrothermal and Surface Energy Fluxes in the Permafrost Region of the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3100-z
    [4] BAO Qing, LIU Yimin, SHI Jiancheng, WU Guoxiong, 2010: Comparisons of Soil Moisture Datasets over the Tibetan Plateau and Application to the Simulation of Asia Summer Monsoon Onset, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 303-314.  doi: 10.1007/s00376-009-8132-5
    [5] Joshua TALIB, Omar V. MÜLLER, Emma J. BARTON, Christopher M. TAYLOR, Pier Luigi VIDALE, 2023: The Representation of Soil Moisture−Atmosphere Feedbacks across the Tibetan Plateau in CMIP6, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2063-2081.  doi: 10.1007/s00376-023-2296-2
    [6] Yizhe HAN, Dabang JIANG, Dong SI, Yaoming MA, Weiqiang MA, 2023: Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020: Role of Soil Moisture, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-2363-8
    [7] SUN Wenjuan, HUANG Yao, CHEN Shutao, ZOU Jianwen, ZHENG Xunhua, 2007: Dependence of Wheat and Rice Respiration on Tissue Nitrogen and the Corresponding Net Carbon Fixation Efficiency Under Different Rates of Nitrogen Application, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 55-64.  doi: 10.1007/s00376-007-0055-4
    [8] Qianhui Ma, Chunyan Zhang, Donghai Wang, Zihao Pang, 2023: Summer Atmospheric Water Cycle under the Transition Influence of Westerly and Summer Monsoon over Yarlung Zangbo River Basin in the Southern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3094-6
    [9] Changyu ZHAO, Haishan CHEN, Shanlei SUN, 2018: Evaluating the Capabilities of Soil Enthalpy, Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 445-456.  doi: 10.1007/s00376-017-7006-5
    [10] Jia Xinyuan, Ye Zhuojia, 1990: The Impact of Soil Moisture on Dispersion-Related Characteristics, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 441-452.  doi: 10.1007/BF03008874
    [11] NIE Suping, LUO Yong, ZHU Jiang, 2008: Trends and Scales of Observed Soil Moisture Variations in China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 43-58.  doi: 10.1007/s00376-008-0043-3
    [12] LI Qian, SUN Shufen, DAI Qiudan, 2009: The Numerical Scheme Development of a Simplified Frozen Soil Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 940-950.  doi: 10.1007/s00376-009-7174-z
    [13] Ye Zhuojia, Roger A. Pielke, 1995: A Parameterization of Bowen Ratio with Respect to Soil Moisture Availability, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 449-474.  doi: 10.1007/BF02657005
    [14] LIU Shikuo, LIU Shida, FU Zuntao, SUN Lan, 2005: A Nonlinear Coupled Soil Moisture-Vegetation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 337-342.  doi: 10.1007/BF02918747
    [15] Qin XU, Binbin ZHOU, 2003: Retrieving Soil Water Contents from Soil Temperature Measurements by Using Linear Regression, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 849-858.  doi: 10.1007/BF02915509
    [16] Haoxin ZHANG, Naiming YUAN, Zhuguo MA, Yu HUANG, 2021: Understanding the Soil Temperature Variability at Different Depths: Effects of Surface Air Temperature, Snow Cover, and the Soil Memory, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 493-503.  doi: 10.1007/s00376-020-0074-y
    [17] LIU Huizhi, WANG Baomin, FU Congbin, 2008: Relationships Between Surface Albedo, Soil Thermal Parameters and Soil Moisture in the Semi-arid Area of Tongyu, Northeastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 757-764.  doi: 10.1007/s00376-008-0757-2
    [18] Zeng Qingcun, Zeng Xiaodong, Lu Peisheng, 1994: Simplified Dynamic Models of Grass Field Ecosystem, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 385-390.  doi: 10.1007/BF02658157
    [19] GUO Weidong, WANG Huijun, 2003: A Case Study of the Improvement of Soil Moisture Initialization in IAP-PSSCA, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 845-848.  doi: 10.1007/BF02915411
    [20] XU Xingkai, Kazuyuki INUBUSHI, 2009: Soil Acidification Stimulates the Emission of Ethylene from Temperate Forest Soils, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1253-1261.  doi: 10.1007/s00376-009-8120-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2009
Manuscript revised: 10 May 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Seasonal Patterns of Soil Respiration in Three Types of Communities along Grass-Desert Shrub Transition in Inner Mongolia, China

  • 1. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075;Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101;Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101;Institute of Geography, Mainz University, Mainz 55099, Germany

Abstract: The seasonal dynamics of soil respiration in steppe (S. bungeana), desert shrub (A. ordosica), and shrub-perennial (A. ordosica + C. komarovii) communities were investigated during the growth season (May to October) in 2006; their environmental driving factors were also analyzed. In the three communities, soil respiration showed similar characteristics in their growth seasons, with peak respiration values in July and August owing to suitable temperature and soil moisture conditions during this period. Meanwhile, changes in soil respiration were greatly influenced by temperatures and surface soil moistures. Soil water content at a depth of 0 to 10 cm was identified as the key environmental factor affecting the variation in soil respiration in the steppe. In contrast, in desert shrub and shrub-perennial communities, the dynamics of soil respiration was significantly influenced by air temperature. Similarly, the various responses of soil respiration to environmental factors may be attributed to the different soil textures and distribution patterns of plant roots. In desert ecosystems, precipitation results in soil respiration pulses. Soil carbon dioxide (CO2) effluxes greatly increased after rainfall rewetting in all of the ecosystems under study. However, the precipitation pulse effect differed across the ecosystem. We propose that this may be a result of a reverse effect from the soil texture.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return