Advanced Search
Article Contents

The Dynamical Characteristics and Wave Structure of Typhoon Rananim (2004)


doi: 10.1007/s00376-009-0523-0

  • Typhoon Rananim (2004) was one of the severest typhoons landfalling the Chinese mainland from 1996 to 2004. It brought serious damage and induced prodigious economical loss. Using a new generation of mesoscale model, named the Weather Research and Forecasting (WRF) modeling system, with 1.667 km grid horizontal spacing on the finest nested mesh, Rananim was successfully simulated in terms of track, intensity, eye, eyewall, and spiral rainbands. We compared the structures of Rananim to those of hurricanes in previous studies and observations to assess the validity of simulation. The three-dimensional (3D) dynamic and thermal structures of eye and eyewall were studied based on the simulated results. The focus was investigation of the characteristics of the vortex Rossby waves in the inner-core region. We found that the Rossby vortex waves propagate azimuthally upwind against the azimuthal mean tangential flow around the eyewall, and their period was longer than that of an air parcel moving within the azimuthal mean tangential flow. They also propagated outward against the boundary layer inflow of the azimuthal mean vortex. Futhermore, we studied the connection between the spiral potential vorticity (PV) bands and spiral rainbands, and found that the vortex Rossby waves played an important role in the formation process of spiral rainbands.
  • [1] ZHOU Lingli, ZHAI Guoqing, HE Bin, 2011: Numerical Study of the Mesoscale Systems in the Spiral Rainband of 0509 Typhoon Matsa, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 118-128.  doi: 10.1007/s00376-010-0023-2
    [2] CHEN Lianshou, LUO Zhexian, 2004: Interaction of Typhoon and Mesoscale Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 515-528.  doi: 10.1007/BF02915719
    [3] XU Yamei, WU Rongsheng, 2003: The Conservation of Helicity in Hurricane Andrew (1992) and the Formation of the Spiral Rainband, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 940-950.  doi: 10.1007/BF02915517
    [4] PAN Lunxiang, QIE Xiushu, WANG Dongfang, , 2014: Lightning Activity and Its Relation to the Intensity of Typhoons over the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 581-592.  doi: 10.1007/s00376-013-3115-y
    [5] YUE Caijun, GAO Shouting, LIU Lu, LI Xiaofan, 2015: A Diagnostic Study of the Asymmetric Distribution of Rainfall during the Landfall of Typhoon Haitang (2005), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1419-1430.  doi: 10.1007/s00376-015-4246-0
    [6] Chen Lianshou, Luo Zhexian, 1995: Effect of the Interaction of Different Scale Vortices on the Structure and Motion of Typhoons, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 207-214.  doi: 10.1007/BF02656833
    [7] ZHU Peijun, ZHENG Yongguang, ZHANG Chunxi, TAO Zuyu, 2005: A Study of the Extratropical Transformation of Typhoon Winnie (1997), ADVANCES IN ATMOSPHERIC SCIENCES, 22, 730-740.  doi: 10.1007/BF02918716
    [8] Angkool WANGWONGCHAI, ZHAO Sixiong, ZENG Qingcun, 2010: An Analysis of Typhoon Chanthu in June 2004 with Focus on the Impact on Thailand, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 14-32.  doi: 10.1007/s00376-009-8206-4
    [9] GU Jianfeng, Qingnong XIAO, Ying-Hwa KUO, Dale M. BARKER, XUE Jishan, MA Xiaoxing, 2005: Assimilation and Simulation of Typhoon Rusa (2002) Using the WRF System, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 415-427.  doi: 10.1007/BF02918755
    [10] Lin DENG, Wenhua GAO, Yihong DUAN, Yuqing WANG, 2019: Microphysical Properties of Rainwater in Typhoon Usagi (2013): A Numerical Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 510-526.  doi: 10.1007/s00376-019-8170-6
    [11] Shuai YANG, Xiba TANG, Shuixin ZHONG, Bin CHEN, Yushu ZHOU, Shouting GAO, Chengxin WANG, 2019: Convective Bursts Episode of the Rapidly Intensified Typhoon Mujigae (2015), ADVANCES IN ATMOSPHERIC SCIENCES, 36, 541-556.  doi: 10.1007/s00376-019-8142-x
    [12] Lei LIU, Guihua WANG, Ze ZHANG, Huizan WANG, 2022: Effects of Drag Coefficients on Surface Heat Flux during Typhoon Kalmaegi (2014), ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1501-1518.  doi: 10.1007/s00376-022-1285-1
    [13] Zi-Liang LI, Ping WEN, 2017: Comparison between the Response of the Northwest Pacific Ocean and the South China Sea to Typhoon Megi (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 79-87.  doi: 10.1007/s00376-016-6027-9
    [14] REN Xuejuan, William PERRIE, 2006: Air-sea Interaction of Typhoon Sinlaku (2002) Simulated by the Canadian MC2 Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 521-530.  doi: 10.1007/s00376-006-0521-4
    [15] Sung Hyup YOU, Yong Hee LEE, Woo Jeong LEE, 2011: Parameterization and Application of Storm Surge/Tide Modeling Using a Genetic Algorithm for Typhoon Periods, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1067-1076.  doi: 10.1007/s00376-011-0113-9
    [16] Hong WANG, Wenqing WANG, Jun WANG, Dianli GONG, Dianguo ZHANG, Ling ZHANG, Qiuchen ZHANG, 2021: Rainfall Microphysical Properties of Landfalling Typhoon Yagi (201814) Based on the Observations of Micro Rain Radar and Cloud Radar in Shandong, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 994-1011.  doi: 10.1007/s00376-021-0062-x
    [17] Dongmei XU, Feifei SHEN, Jinzhong MIN, Aiqing SHU, 2021: Assimilation of GPM Microwave Imager Radiance for Track Prediction of Typhoon Cases with the WRF Hybrid En3DVAR System, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 983-993.  doi: 10.1007/s00376-021-0252-6
    [18] Yangmei TIAN, John L. MCBRIDE, Fumin REN, Guoping LI, Tian FENG, 2022: Changes in Typhoon Regional Heavy Precipitation Events over China from 1960 to 2018, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 272-283.  doi: 10.1007/s00376-021-1015-0
    [19] SHEN Xinyong, DING Yihui, ZHAO Nan, 2006: Properties and Stability of a Meso-Scale Line-Form Disturbance, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 282-290.  doi: 10.1007/s00376-006-0282-0
    [20] LI Weibiao, 2004: Modelling Air-Sea Fluxes during a Western Pacific Typhoon: Role of Sea Spray, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 269-276.  doi: 10.1007/BF02915713

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2009
Manuscript revised: 10 May 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Dynamical Characteristics and Wave Structure of Typhoon Rananim (2004)

  • 1. Department of Atmospheric Sciences, Nanjing University, Nanjing 210093;State Key Laboratory of Sever Weather, Chinese Academy of Meteorological Sciences, Beijing 100081;Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044

Abstract: Typhoon Rananim (2004) was one of the severest typhoons landfalling the Chinese mainland from 1996 to 2004. It brought serious damage and induced prodigious economical loss. Using a new generation of mesoscale model, named the Weather Research and Forecasting (WRF) modeling system, with 1.667 km grid horizontal spacing on the finest nested mesh, Rananim was successfully simulated in terms of track, intensity, eye, eyewall, and spiral rainbands. We compared the structures of Rananim to those of hurricanes in previous studies and observations to assess the validity of simulation. The three-dimensional (3D) dynamic and thermal structures of eye and eyewall were studied based on the simulated results. The focus was investigation of the characteristics of the vortex Rossby waves in the inner-core region. We found that the Rossby vortex waves propagate azimuthally upwind against the azimuthal mean tangential flow around the eyewall, and their period was longer than that of an air parcel moving within the azimuthal mean tangential flow. They also propagated outward against the boundary layer inflow of the azimuthal mean vortex. Futhermore, we studied the connection between the spiral potential vorticity (PV) bands and spiral rainbands, and found that the vortex Rossby waves played an important role in the formation process of spiral rainbands.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return