Advanced Search
Article Contents

Tropical Cyclones and Polar Lows: Velocity, Size, and Energy Scales, and Relation to the 26oC Cyclone Origin Criteria


doi: 10.1007/s00376-009-0585-z

  • The goal of this paper is to quantitatively formulate some necessary conditions for the development of intense atmospheric vortices. Specifically, these criteria are discussed for tropical cyclones (TC) and polar lows (PL) by using bulk formulas for fluxes of momentum, sensible heating, and latent heating between the ocean and the atmosphere. The velocity scale is used in two forms: (1) as expressed through the buoyancy flux b and the Coriolis parameter lc for rotating fluids convection, and (2) as expressed with the cube of velocity times the drag coefficient through the formula for total kinetic energy dissipation in the atmospheric boundary layer. In the quasistationary case the dissipation equals the generation of the energy. In both cases the velocity scale can be expressed through temperature and humidity differences between the ocean and the atmosphere in terms of the reduced gravity, and both forms produce quite comparable velocity scales. Using parameters b and lc, we can form scales of the area and, by adding the mass of a unit air column, a scale of the total kinetic energy as well. These scales nicely explain the much smaller size of a PL, as compared to a TC, and the total kinetic energy of a TC is of the order 1018-1019 J. It will be shown that wind of 33 m s-1 is produced when the total enthalpy fluxes between the ocean and the atmosphere are about 700 W m-2 for a TC and 1700 W m-2 for a PL, in association with the much larger role of the latent heat in the first case and the stricter geostrophic constraints and larger static stability in the second case. This replaces the mystical role of 26oC as a criterion for TC origin. The buoyancy flux, a product of the reduced gravity and the wind speed, together with the atmospheric static stability, determines the rate of the penetrating convection. It is known from the observations that the formation time for a PL reaching an altitude of 5--6 km can be only a few hours, and a day, or even half a day, for a TC reaching 15--18 km. These two facts allow us to construct curves on the plane of Ts and ΔT=Ts-Ta to determine possibilities for forming an intense vortex. Here, Ta is the atmospheric temperature at the height z=10 m. A PL should have ΔT>20oC in accordance with the observations and numerical simulations. The conditions for a TC are not so straightforward but our diagram shows that the temperature difference of a few degrees, or possibly even a fraction of a degree, might be sufficient for TC development for a range of static stabilities and development times.
  • [1] Emily A. FOGARTY, James B. ELSNER, Thomas H. JAGGER, Kam-biu LIU, Kin-sheun LOUIE, 2006: Variations in Typhoon Landfalls over China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 665-677.  doi: 10.1007/s00376-006-0665-2
    [2] Xun LI, Noel E. DAVIDSON, Yihong DUAN, Kevin J. TORY, Zhian SUN, Qinbo CAI, 2020: Analysis of an Ensemble of High-Resolution WRF Simulations for the Rapid Intensification of Super Typhoon Rammasun (2014), ADVANCES IN ATMOSPHERIC SCIENCES, 37, 187-210.  doi: 10.1007/s00376-019-8274-z
    [3] Zhe-Min TAN, Lili LEI, Yuqing WANG, Yinglong XU, Yi ZHANG, 2022: Typhoon Track, Intensity, and Structure: From Theory to Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1789-1799.  doi: 10.1007/s00376-022-2212-1
    [4] Ding Jincai, Tang Xinzhang, 1986: AN ANALYSIS OF THE CAUSES OF MEANDERING TRACKS OF TYPHOONS, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 252-261.  doi: 10.1007/BF02682559
    [5] Tianju WANG, Zhong ZHONG, Ju WANG, 2018: Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 531-539.  doi: 10.1007/s00376-017-7126-y
    [6] Wang Zhilie, 1985: TEN YEARS' ADVANCES OF RESEARCH ON KNOTTY TYPHOONS IN CHINA, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 415-425.  doi: 10.1007/BF02678741
    [7] LI Nan, WEI Ming, TANG Xiaowen, PAN Yujie, 2007: An Improved Velocity Volume Processing Method, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 893-906.  doi: 10.1007/s00376-007-0893-0
    [8] Fu Baopu, 1987: VARIATION IN WIND VELOCITY OVER WATER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 93-104.  doi: 10.1007/BF02656665
    [9] PAN Lunxiang, QIE Xiushu, WANG Dongfang, , 2014: Lightning Activity and Its Relation to the Intensity of Typhoons over the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 581-592.  doi: 10.1007/s00376-013-3115-y
    [10] Chen Lianshou, Luo Zhexian, 1995: Effect of the Interaction of Different Scale Vortices on the Structure and Motion of Typhoons, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 207-214.  doi: 10.1007/BF02656833
    [11] Bao Chenglan, Ruan Junshi, Zhu Yaojian, 1986: A STUDY ON THE RELATIONSHIP BETWEEN THE ROTATION OF BINARY TYPHOONS AND STEERING CURRENT, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 115-124.  doi: 10.1007/BF02680050
    [12] Chen Shanmin, 1987: PRELIMINARY ANALYSIS ON THE STRUCTURE AND INTENSITY OF CONCENTRIC DOUBLE-EYE TYPHOONS, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 113-118.  doi: 10.1007/BF02656667
    [13] Zhao Ming, 1987: ON THE PARAMETERIZATION OF THE VERTICAL VELOCITY AT THE TOP OF PLANETARY BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 233-239.  doi: 10.1007/BF02677070
    [14] Kelvin T. F. CHAN, Johnny C. L. CHAN, 2016: Sensitivity of the Simulation of Tropical Cyclone Size to Microphysics Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1024-1035.  doi: 10.1007/s00376-016-5183-2
    [15] Yao Keya, Liu Chunlei, 1996: ICE Particle Size and Shape Effect on Solar Energy Scattering Angular Distribution, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 505-510.  doi: 10.1007/BF03342040
    [16] Li Chongyin, 1988: ACTIONS OF TYPHOONS OVER THE WESTERN PACIFIC (INCLUDING THE SOUTH CHINA SEA) AND EL NINO, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 107-116.  doi: 10.1007/BF02657352
    [17] Shuang LUO, Yunfei FU, Shengnan ZHOU, Xiaofeng WANG, Dongyong WANG, 2020: Analysis of the Relationship between the Cloud Water Path and Precipitation Intensity of Mature Typhoons in the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 359-376.  doi: 10.1007/s00376-020-9204-9
    [18] LIU Guimei, WANG Hui, SUN Song, HAN Boping, 2003: Numerical Study on the Velocity Structure around Tidal Fronts in the Yellow Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 453-460.  doi: 10.1007/BF02690803
    [19] SUN Jianning, JIANG Weimei, CHEN Ziyun, YUAN Renmin, 2005: A Laboratory Study of the Turbulent Velocity Characteristics in the Convective Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 770-780.  doi: 10.1007/BF02918721
    [20] LI Gang, HE Guangxin, Xiaolei ZOU*, and Peter Sawin RAY, 2014: A Velocity Dealiasing Scheme for C-band Weather Radar Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 17-26.  doi: 10.1007/s00376-013-2251-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2009
Manuscript revised: 10 May 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tropical Cyclones and Polar Lows: Velocity, Size, and Energy Scales, and Relation to the 26oC Cyclone Origin Criteria

  • 1. A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow 119017, Russian Federation

Abstract: The goal of this paper is to quantitatively formulate some necessary conditions for the development of intense atmospheric vortices. Specifically, these criteria are discussed for tropical cyclones (TC) and polar lows (PL) by using bulk formulas for fluxes of momentum, sensible heating, and latent heating between the ocean and the atmosphere. The velocity scale is used in two forms: (1) as expressed through the buoyancy flux b and the Coriolis parameter lc for rotating fluids convection, and (2) as expressed with the cube of velocity times the drag coefficient through the formula for total kinetic energy dissipation in the atmospheric boundary layer. In the quasistationary case the dissipation equals the generation of the energy. In both cases the velocity scale can be expressed through temperature and humidity differences between the ocean and the atmosphere in terms of the reduced gravity, and both forms produce quite comparable velocity scales. Using parameters b and lc, we can form scales of the area and, by adding the mass of a unit air column, a scale of the total kinetic energy as well. These scales nicely explain the much smaller size of a PL, as compared to a TC, and the total kinetic energy of a TC is of the order 1018-1019 J. It will be shown that wind of 33 m s-1 is produced when the total enthalpy fluxes between the ocean and the atmosphere are about 700 W m-2 for a TC and 1700 W m-2 for a PL, in association with the much larger role of the latent heat in the first case and the stricter geostrophic constraints and larger static stability in the second case. This replaces the mystical role of 26oC as a criterion for TC origin. The buoyancy flux, a product of the reduced gravity and the wind speed, together with the atmospheric static stability, determines the rate of the penetrating convection. It is known from the observations that the formation time for a PL reaching an altitude of 5--6 km can be only a few hours, and a day, or even half a day, for a TC reaching 15--18 km. These two facts allow us to construct curves on the plane of Ts and ΔT=Ts-Ta to determine possibilities for forming an intense vortex. Here, Ta is the atmospheric temperature at the height z=10 m. A PL should have ΔT>20oC in accordance with the observations and numerical simulations. The conditions for a TC are not so straightforward but our diagram shows that the temperature difference of a few degrees, or possibly even a fraction of a degree, might be sufficient for TC development for a range of static stabilities and development times.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return