Advanced Search
Article Contents

Comparison of COSMIC Radio Occultation Refractivity Profiles with Radiosonde Measurements


doi: 10.1007/s00376-009-8066-y

  • In recent years, radio occultation (RO) technology making use of global positioning system (GPS) signals has been exploited to obtain profiles of atmospheric parameters in the neutral atmosphere. In this paper, the RO refractivity profiles obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission are statistically compared with the observations of 38 radiosonde stations provided by the Australian Bureau of Meteorology during the period from 15 July 2006 through 15 July 2007. Different collocation criteria are compared at first, and COSMIC RO soundings that occur within 3 hours and 300 km of radiosonde measurements are used for the final statistical comparison. The overall results show that the agreements between the COSMIC refractivity profiles and the radiosonde soundings from the 38 stations are very good at 0--30 km altitude, with mean absolute relative refractivity deviations of less than 0.5%. Latitudinal comparisons indicate that there are negative refractivity deviations in the lower troposphere over the low latitude and middle latitude regions and large standard deviations exist in the lower troposphere of low latitude regions, which can reach up to ~6%. The comparisons of COSMIC RO refractivity profiles and radiosonde observations for 3 polar stations in four different seasons indicate that the accuracy of GPS RO profiles is better in the Austral summer and autumn than in the Austral spring and winter during the year from September 2006 to August 2007.
  • [1] WANG Xin, Lü Daren, 2005: Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 759-764.  doi: 10.1007/BF02918719
    [2] Houaria NAMAOUI, Salem KAHLOUCHE, Ahmed Hafid BELBACHIR, Roeland Van MALDEREN, Hugues BRENOT, Eric POTTIAUX, 2017: GPS Water Vapor and Its Comparison with Radiosonde and ERA-Interim Data in Algeria, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 623-634.  doi: 10.1007/s00376-016-6111-1
    [3] WANG Xiaoying, WANG Xianliang, DAI Ziqiang, KE Fuyang, CAO Yunchang, WANG Feifei, SONG Lianchun, 2014: Tropospheric Wet Refractivity Tomography Based on the BeiDou Satellite System, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 355-362.  doi: 10.1007/s00376-013-2311-0
    [4] Ha-Taek KWON, Eui-Hyun JUNG, Gyu-Ho LIM, 2010: A Comparison of GPS- and NWP-derived PW Data over the Korean Peninsula, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 871-882.  doi: 10.1007/s00376-009-9069-4
    [5] CAO Yunchang, CHEN Yongqi, LI Pingwha, 2006: Wet Refractivity Tomography with an Improved Kalman-Filter Method, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 693-699.  doi: 10.1007/s00376-006-0693-y
    [6] Qizhen SUN, Timo VIHMA, Marius O. JONASSEN, Zhanhai ZHANG, 2020: Impact of Assimilation of Radiosonde and UAV Observations from the Southern Ocean in the Polar WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 441-454.  doi: 10.1007/s00376-020-9213-8
    [7] BI Yanmeng, MAO Jietai, LI Chengcai, 2006: Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 551-560.  doi: 10.1007/s00376-006-0551-y
    [8] ZHANG Meng, NI Yunqi, ZHANG Fuqing, 2007: Variational Assimilation of GPS Precipitable Water Vapor and Hourly Rainfall Observations for a Meso- Scale Heavy Precipitation Event During the 2002 Mei-Yu Season, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 509-526.  doi: 10.1007/s00376-007-0509-8
    [9] Ling WANG, Xiuqing HU, Na XU, Lin CHEN, 2021: Water Vapor Retrievals from Near-infrared Channels of the Advanced Medium Resolution Spectral Imager Instrument onboard the Fengyun-3D Satellite, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1351-1366.  doi: 10.1007/s00376-020-0174-8
    [10] Xiaoxu TIAN, Xiaolei ZOU, 2020: Comparison of Advanced Technology Microwave Sounder Biases Estimated Using Radio Occultation and Hurricane Florence (2018) Captured by NOAA-20 and S-NPP, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 269-277.  doi: 10.1007/s00376-019-9119-5
    [11] WU Xue*, WANG Xin, and LÜ Daren, 2014: Retrieval of Vertical Distribution of Tropospheric Refractivity through Ground-Based GPS Observation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 37-47.  doi: 10.1007/s00376-013-2215-z
    [12] Jidong GAO, Keith BREWSTER, Ming XUE, 2008: Variation of Radio Refractivity with Respect to Moisture and Temperature and Influence on Radar Ray Path, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1098-1106.  doi: 10.1007/s00376-008-1098-x
    [13] Xiaohua XU, Yadi LI, Jia LUO, 2022: Marine Boundary Layer Heights in the Tropical and Subtropical Oceans Derived from COSMIC-2 Radio Occultation Data, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-022-2052-z
    [14] Yufang TIAN, Daren LÜ, 2017: Comparison of Beijing MST Radar and Radiosonde Horizontal Wind Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 39-53.  doi: 10.1007/s00376-016-6129-4
    [15] Irina V. GORODETSKAYA, Tiago SILVA, Holger SCHMITHÜSEN, Naohiko HIRASAWA, 2020: Atmospheric River Signatures in Radiosonde Profiles and Reanalyses at the Dronning Maud Land Coast, East Antarctica, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 455-476.  doi: 10.1007/s00376-020-9221-8
    [16] Li Shuyong, Wang Bin, Zhang Xin, 2001: The Parallel Computing of GPS Ray-shooting Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1185-1191.  doi: 10.1007/s00376-001-0032-2
    [17] KUANG Zheng, WANG Bin, YANG Hualin, 2003: A Rapid Optimization Algorithm for GPS Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 437-441.  doi: 10.1007/BF02690801
    [18] WANG Yunfeng, WANG Bin, 2003: The Variational Assimilation Experiment of GPS Bending Angle, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 479-486.  doi: 10.1007/BF02690806
    [19] ZHANG Xin, LIU Yuewei, WANG Bin, JI Zhongzhen, 2004: Parallel Computing of a Variational Data Assimilation Model for GPS/MET Observation Using the Ray-Tracing Method, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 220-226.  doi: 10.1007/BF02915708
    [20] YAO Zhigang, Jun LI, Jinlong LI, 2012: Sunglint Impact on Atmospheric Soundings from Hyperspectral Resolution Infrared Radiances, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 455-463.  doi: 10.1007/s00376-011-1013-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2009
Manuscript revised: 10 November 2009
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Comparison of COSMIC Radio Occultation Refractivity Profiles with Radiosonde Measurements

  • 1. School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079, School of Mathematical and Geospatial Sciences, RMIT University, Melbourne Victoria 3001, Australia,School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079,GNSS Research Center, Wuhan University, Wuhan 430079

Abstract: In recent years, radio occultation (RO) technology making use of global positioning system (GPS) signals has been exploited to obtain profiles of atmospheric parameters in the neutral atmosphere. In this paper, the RO refractivity profiles obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission are statistically compared with the observations of 38 radiosonde stations provided by the Australian Bureau of Meteorology during the period from 15 July 2006 through 15 July 2007. Different collocation criteria are compared at first, and COSMIC RO soundings that occur within 3 hours and 300 km of radiosonde measurements are used for the final statistical comparison. The overall results show that the agreements between the COSMIC refractivity profiles and the radiosonde soundings from the 38 stations are very good at 0--30 km altitude, with mean absolute relative refractivity deviations of less than 0.5%. Latitudinal comparisons indicate that there are negative refractivity deviations in the lower troposphere over the low latitude and middle latitude regions and large standard deviations exist in the lower troposphere of low latitude regions, which can reach up to ~6%. The comparisons of COSMIC RO refractivity profiles and radiosonde observations for 3 polar stations in four different seasons indicate that the accuracy of GPS RO profiles is better in the Austral summer and autumn than in the Austral spring and winter during the year from September 2006 to August 2007.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return