Advanced Search
Article Contents

The Adaptive Wavelet Collocation Method and Its Application in Front Simulation


doi: 10.1007/s00376-009-8189-1

  • The adaptive wavelet collocation method (AWCM) is a variable grid technology for solving partial differential equations (PDEs) with high singularities. Based on interpolating wavelets, the AWCM adapts the grid so that a higher resolution is automatically attributed to domain regions with high singularities. Accuracy problems with the AWCM have been reported in the literature, and in this paper problems of efficiency with the AWCM are discussed in detail through a simple one-dimensional (1D) nonlinear advection equation whose analytic solution is easily obtained. A simple and efficient implementation of the AWCM is investigated. Through studying the maximum errors at the moment of frontogenesis of the 1D nonlinear advection equation with different initial values and a comparison with the finite difference method (FDM) on a uniform grid, the AWCM shows good potential for modeling the front efficiently. The AWCM is also applied to a two-dimensional (2D) unbalanced frontogenesis model in its first attempt at numerical simulation of a meteorological front. Some important characteristics about the model are revealed by the new scheme.
  • [1] Luo Zhexian, 1994: Study of Effects of Beta Term and Nonlinear Advection on the Structure of Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 391-398.  doi: 10.1007/BF02658158
    [2] B.D.Kulkarni, Miss Shobha Nandargi, O.N.Dhar, 1995: Efficiency of Severe Recorded Rainstorms over Maharashtra State, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 103-108.  doi: 10.1007/BF02661292
    [3] Yang Hongwei, Wang Bin, Ji Zhongzhen, 2002: Application of the Artificial Compression Method to the Simulation of Two-Dimensional Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 863-869.  doi: 10.1007/s00376-002-0051-7
    [4] Wang Ling, Xu Yinzi, 1997: The Influence of Weakly-Nonlinear Vertical Advection on the Wind Field of PBL with Large-Scale Orography, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 59-68.  doi: 10.1007/s00376-997-0044-7
    [5] Zhang Fuqing, Steven E. Koch, Christopher A. Davis, 2000: A survey of Unbalanced Flow Diagnostics and Their Application, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 165-183.  doi: 10.1007/s00376-000-0001-1
    [6] Lei YIN, Fan PING, Jiahua MAO, Shuanggen JIN, 2023: Analysis on Precipitation Efficiency of the “21.7” Henan Extremely Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 374-392.  doi: 10.1007/s00376-022-2054-x
    [7] Yu ZHANG, Yuanfu XIE, Hongli WANG, Dehui CHEN, Zoltan TOTH, 2016: Ensemble Transform Sensitivity Method for Adaptive Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 10-20.  doi: 10.1007/s00376-015-5031-9
    [8] Feng ZHANG, Xin-Zhong LIANG, ZENG Qingcun, Yu GU, and Shenjian SU, 2013: Cloud-Aerosol-Radiation (CAR) ensemble monitoring system: Overall accuracy and efficiency, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 955-973.  doi: 10.1007/s00376-012-2171-z
    [9] SUN Wenjuan, HUANG Yao, CHEN Shutao, ZOU Jianwen, ZHENG Xunhua, 2007: Dependence of Wheat and Rice Respiration on Tissue Nitrogen and the Corresponding Net Carbon Fixation Efficiency Under Different Rates of Nitrogen Application, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 55-64.  doi: 10.1007/s00376-007-0055-4
    [10] ZHOU Yushu, 2013: Effects of Vertical Wind Shear, Radiation and Ice Microphysics on Precipitation Efficiency during a Torrential Rainfall Event in China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1809-1820.  doi: 10.1007/s00376-013-3007-1
    [11] Binghao JIA, Xin LUO, Longhuan WANG, Xin LAI, 2023: Changes in Water Use Efficiency Caused by Climate Change, CO2 Fertilization, and Land Use Changes on the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 144-154.  doi: 10.1007/s00376-022-2172-5
    [12] Wu Rongsheng, Fang Juan, 2001: Mechanism of Balanced Flow and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 323-334.  doi: 10.1007/BF02919313
    [13] PENG Jiayi, FANG Juan, WU Rongsheng, 2004: Interaction of Mesoscale Convection and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 814-823.  doi: 10.1007/BF02916377
    [14] Ke CHE, Yi LIU, Zhaonan CAI, Dongxu YANG, Haibo WANG, Denghui JI, Yang YANG, Pucai WANG, 2022: Characterization of Regional Combustion Efficiency using ΔXCO: ΔXCO2 Observed by a Portable Fourier-Transform Spectrometer at an Urban Site in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1299-1315.  doi: 10.1007/s00376-022-1247-7
    [15] Fang Juan, Wu Rongsheng, 2001: Topographic Effect on Geostrophic Adjustment and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 524-538.  doi: 10.1007/s00376-001-0042-0
    [16] Majid M. Farahani, Wu Rongsheng, 1998: A Numerical Study of Geostrophic Adjustment and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 179-192.  doi: 10.1007/s00376-998-0038-0
    [17] YANG Shuai, GAO Shouting, LU Chungu, 2014: A Generalized Frontogenesis Function and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1065-1078.  doi: 10.1007/s00376-014-3228-y
    [18] Ye Weizuo, 1991: Influence of Advection on Marine PBL Development, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 201-210.  doi: 10.1007/BF02658094
    [19] Pei HUANG, Chungang CHEN, Xingliang LI, Xueshun SHEN, Feng XIAO, 2022: An Adaptive Nonhydrostatic Atmospheric Dynamical Core Using a Multi-Moment Constrained Finite Volume Method, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 487-501.  doi: 10.1007/s00376-021-1185-9
    [20] Zhao Ming, 1991: The Effect of Topography on Quasi-Geostrophic Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 23-40.  doi: 10.1007/BF02657362

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2010
Manuscript revised: 10 May 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Adaptive Wavelet Collocation Method and Its Application in Front Simulation

  • 1. Key Laboratory of Meso-scale Severe Weather/Ministry of Education, Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Key Laboratory of Meso-scale Severe Weather/Ministry of Education, Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Key Laboratory of Meso-scale Severe Weather/Ministry of EducaDepartment of Atmospheric Sciences, Nanjing University, Nanjing 210093tion,

Abstract: The adaptive wavelet collocation method (AWCM) is a variable grid technology for solving partial differential equations (PDEs) with high singularities. Based on interpolating wavelets, the AWCM adapts the grid so that a higher resolution is automatically attributed to domain regions with high singularities. Accuracy problems with the AWCM have been reported in the literature, and in this paper problems of efficiency with the AWCM are discussed in detail through a simple one-dimensional (1D) nonlinear advection equation whose analytic solution is easily obtained. A simple and efficient implementation of the AWCM is investigated. Through studying the maximum errors at the moment of frontogenesis of the 1D nonlinear advection equation with different initial values and a comparison with the finite difference method (FDM) on a uniform grid, the AWCM shows good potential for modeling the front efficiently. The AWCM is also applied to a two-dimensional (2D) unbalanced frontogenesis model in its first attempt at numerical simulation of a meteorological front. Some important characteristics about the model are revealed by the new scheme.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return