Advanced Search
Article Contents

Analysis on the Interaction between Turbulence and Secondary Circulation of the Surface Layer at Jinta Oasis in Summer


doi: 10.1007/s00376-009-9015-5

  • The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer. It is found that when the mean horizontal flow was stronger, the turbulent kinetic energy was increased at all levels, as well as the downward mean wind at the middle level. Since the mean vertical flow on the top and bottom were both negligible at that time, there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column. After consideration of energy conversion, it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other. The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow. Turbulent sensible and latent heat flux anomaly were also analyzed. The results show that in both daytime and at night, when the surface layer turbulence was intensified as a result of strengthened mean flow, the sensible heat flux was decreased while the latent heat flux was increased. Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.
  • [1] ZUO Qunjie, GAO Shouting, LU Daren, 2012: Kinetic and Available Potential Energy Transport during the Stratospheric Sudden Warming in January 2009, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1343-1359.  doi: 10.1007/s00376-012-1198-5
    [2] Zipeng YUAN, Xiaoyong ZHUGE, Yuan WANG, 2020: The Forced Secondary Circulation of the Mei-yu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 766-780.  doi: 10.1007/s00376-020-9177-8
    [3] Yiwu HUANG, Yihong DUAN, Johnny C. L. CHAN, Xuwei BAO, 2019: A Method for Diagnosing the Secondary Circulation with Saturated Moist Entropy Structure in a Mature Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, , 804-810.  doi: 10.1007/s00376-019-9054-5
    [4] YUE Ping, ZHANG Qiang, WANG Runyuan, LI Yaohui, WANG Sheng, 2015: Turbulence Intensity and Turbulent Kinetic Energy Parameters over a Heterogeneous Terrain of Loess Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1291-1302.  doi: 10.1007/s00376-015-4258-9
    [5] LI Yuefeng, 2007: Conversion of Kinetic Energy from Synoptic Scale Disturbance to Low-Frequency Fluctuation over the Yangtze River Valley in the Summers of 1997 and 1999, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 591-598.  doi: 10.1007/s00376-007-0591-y
    [6] SUN Shufen, ZHANG Xia, 2004: Effect of the Lower Boundary Position of the Fourier Equation on the Soil Energy Balance, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 868-878.  doi: 10.1007/BF02915589
    [7] Wang Zuoshu, Zhang Ruojun, Peng Zhengyi, 1989: The Kinetic Energy Budget and Circulation Characteristics of the Tropical Storm Irma during AMEX Phase II, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 414-423.  doi: 10.1007/BF02659076
    [8] Xu Jianjun, 1993: Quasi-40-Day Oscillation and Its Teleconnection Struc-ture together with the Possible Dependence on Conversion of Barotropic Unstable Energy of Temporal Mean Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 193-200.  doi: 10.1007/BF02919141
    [9] Shou Shaowen, Li Shenshen, 1991: Diagnosis of Kinetic Energy Balance of a Decaying Onland Typhoon, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 479-488.  doi: 10.1007/BF02919270
    [10] HU Yinqiao, ZUO Hongchao, 2003: The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 794-798.  doi: 10.1007/BF02915404
    [11] Liu Shikuo, Huang Wei, Rong Pingping, 1992: Effects of Turbulent Dispersion of Atmospheric Balance Motions of Planetary Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 147-156.  doi: 10.1007/BF02657505
    [12] ZUO Qunjie, GAO Shouting, and LÜ Daren, 2014: Eddy Kinetic Energy Study of the Snowstorm over Southern China in January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 972-984.  doi: 10.1007/s00376-013-3122-z
    [13] Xin QUAN, Xiaofan LI, 2023: Kinetic Energy Budgets during the Rapid Intensification of Typhoon Rammasun (2014), ADVANCES IN ATMOSPHERIC SCIENCES, 40, 78-94.  doi: 10.1007/s00376-022-2060-z
    [14] Qiu Yongyan, 1993: On the Seasonal Transition and the Interannual Variability in Global Kinetic Energy at 500 hPa, Accompanied with Anomalies of Energy during the 1982 / 83 ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 248-256.  doi: 10.1007/BF02919148
    [15] Yao Keya, Liu Chunlei, 1996: ICE Particle Size and Shape Effect on Solar Energy Scattering Angular Distribution, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 505-510.  doi: 10.1007/BF03342040
    [16] MA Yaoming, Massimo MENENTI, Reinder FEDDES, 2010: Parameterization of Heat Fluxes at Heterogeneous Surfaces by Integrating Satellite Measurements with Surface Layer and Atmospheric Boundary Layer Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 328-336.  doi: 10.1007/s00376-009-9024-4
    [17] D.R. Chakraborty, N.K. Agarwal, 1996: Role of Triad Kinetic Energy Interactions for Maintenance of Upper Tropospheric Low Frequency Waves during Summer Monsoon 1988, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 91-102.  doi: 10.1007/BF02657030
    [18] LING Jian, LI Chongyin, ZHOU Wen, JIA Xiaolong, Chidong ZHANG, 2013: Effect of Boundary Layer Latent Heating on MJO Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 101-115.  doi: 10.1007/s00376-012-2031-x
    [19] ZHANG Ming, ZHAO Yanling, HUANG Hong, LIANG Danqing, 2007: The Generalized Energy Equation and Instability in the Two-layer Barotropic Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 147-151.  doi: 10.1007/s00376-007-0147-1
    [20] Xu Xiangde, 1991: The Effect of Spatial Structure Character of Heat Source on the Ray Path and the Evolution of Wave Energy of Meridional Wave Train, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 87-98.  doi: 10.1007/BF02657367

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2010
Manuscript revised: 10 May 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Analysis on the Interaction between Turbulence and Secondary Circulation of the Surface Layer at Jinta Oasis in Summer

  • 1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou 730000,Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000

Abstract: The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer. It is found that when the mean horizontal flow was stronger, the turbulent kinetic energy was increased at all levels, as well as the downward mean wind at the middle level. Since the mean vertical flow on the top and bottom were both negligible at that time, there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column. After consideration of energy conversion, it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other. The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow. Turbulent sensible and latent heat flux anomaly were also analyzed. The results show that in both daytime and at night, when the surface layer turbulence was intensified as a result of strengthened mean flow, the sensible heat flux was decreased while the latent heat flux was increased. Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return