Advanced Search
Article Contents

What Causes the Springtime Tropospheric Ozone Maximum over Northeast Asia?


doi: 10.1007/s00376-009-9098-z

  • Scientists have long debated the relative importance of tropospheric photochemical production versus stratospheric influx as causes of the springtime tropospheric ozone maximum over northern mid-latitudes. This paper investigates whether or not stratospheric intrusion and photochemistry play a significant role in the springtime ozone maximum over Northeast Asia, where ozone measurements are sparse. We examine how tropospheric ozone seasonalities over Naha (26oN, 128oE), Kagoshima (31oN, 131oE), and Pohang (36oN, 129oE), which are located on the same meridional line, are related to the timing and location of the jet stream. The ozone seasonality shows a gradual increase from January to the maximum ozone month, which corresponds to April at Naha, May at Kagoshima, and June at Pohang. In order to examine the occurrence of stratospheric intrusion, we analyze a correlation between jet stream activity and tropospheric ozone seasonality. From these analyses, we did not find any favorable evidence supporting the hypothesis that the springtime enhancement may result from stratospheric intrusion. According to trajectory analysis for vertical and horizontal origins of the airmass, a gradual increasing tendency in ozone amounts from January until the onset of monsoon was similar to the increasing ozone formation tendency from winter to spring over mainland China, which has been observed during the build-up of tropospheric ozone over Central Europe in the winter--spring transition period due to photochemistry. Overall, the analyses suggest that photochemistry is the most important contributor to observed ozone seasonality over Northeast Asia.
  • [1] XIE Fei, LI Jianping, TIAN Wenshou, ZHANG Jiankai, SHU Jianchuan, 2014: The Impacts of Two Types of El Nio on Global Ozone Variations in the Last Three Decades, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1113-1126.  doi: 10.1007/s00376-013-3166-0
    [2] ZHANG Meigen, XU Yongfu, Itsushi UNO, Hajime AKIMOTO, 2004: A Numerical Study of Tropospheric Ozone in the Springtime in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 163-170.  doi: 10.1007/BF02915702
    [3] Bing XIE, Hua ZHANG, Zhili WANG, Shuyun ZHAO, Qiang FU, 2016: A Modeling Study of Effective Radiative Forcing and Climate Response Due to Tropospheric Ozone, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 819-828.  doi: 10.1007/s00376-016-5193-0
    [4] Yuli ZHANG, Chuanxi LIU, Yi LIU, Rui YANG, 2019: Intraseasonal Oscillation of Tropospheric Ozone over the Indian Summer Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 417-430.  doi: 10.1007/s00376-018-8113-7
    [5] LIU Qianxia, ZHANG Meigen, WANG Bin, 2005: Simulation of Tropospheric Ozone with MOZART-2:An Evaluation Study over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 585-594.  doi: 10.1007/BF02918490
    [6] GAO Lijie, ZHANG Meigen, HAN Zhiwei, 2009: Model Analysis of Seasonal Variations in Tropospheric Ozone and Carbon Monoxide over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 312-318.  doi: 10.1007/s00376-009-0312-9
    [7] Yu FU, Hong LIAO, Yang YANG, 2019: Interannual and Decadal Changes in Tropospheric Ozone in China and the Associated Chemistry-Climate Interactions: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 975-993.  doi: 10.1007/s00376-019-8216-9
    [8] CHANG Wenyuan, LIAO Hong, WANG Huijun, 2009: Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in eastern China over 1951-2000, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 748-762.  doi: 10.1007/s00376-009-9032-4
    [9] ZHAO Haikun, WU Liguang, ZHOU Weican, 2010: Assessing the Influence of the ENSO on Tropical Cyclone Prevailing Tracks in the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1361-1371.  doi: 10.1007/s00376-010-9161-9
    [10] LI Dan, BIAN Jianchun, 2015: Observation of a Summer Tropopause Fold by Ozonesonde at Changchun, China: Comparison with Reanalysis and Model Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1354-1364.  doi: 10.1007/s00376-015-5022-x
    [11] LIAO Hong, CHANG Wenyuan, YANG Yang, 2015: Climatic Effects of Air Pollutants over China: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 115-139.  doi: 10.1007/s00376-014-0013-x
    [12] WANG Tijian, K. S. LAM, C. W. TSANG, S. C. KOT, 2004: On the Variability and Correlation of Surface Ozone and Carbon Monoxide Observed in Hong Kong Using Trajectory and Regression Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 141-152.  doi: 10.1007/BF02915688
    [13] LIN Zhongda, LU Riyu, 2005: Interannual Meridional Displacement of the East Asian Upper-tropospheric Jet Stream in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 199-211.  doi: 10.1007/BF02918509
    [14] LIN Zhongda, 2013: Impacts of two types of northward jumps of the East Asian upper-tropospheric jet stream in midsummer on rainfall in eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1224-1234.  doi: 10.1007/s00376-012-2105-9
    [15] V. N. R. Mukku, C. S. Bhosale, 1991: Ozone during Stratospheric Warmings at Uccle, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 251-255.  doi: 10.1007/BF02658099
    [16] Sonia MONTECINOS, Patricia BARRIENTOS, 2006: Dependence of Upper Atmosphere Photochemistry on the Shape of the Diurnal Cycle of the Photolysis Rates, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 207-214.  doi: 10.1007/s00376-006-0207-y
    [17] Leying ZHANG, Haiming XU, Ning SHI, Jiechun DENG, 2017: Responses of the East Asian Jet Stream to the North Pacific Subtropical Front in Spring, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 144-156.  doi: 10.1007/s00376-016-6026-x
    [18] TIAN Wenshou, Martyn P. CHIPPERFIELD, LU Daren, 2009: Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 423-437.  doi: 10.1007/s00376-009-0423-3
    [19] Jingmei Yang, Jinhuan Qiu, 2009: An Empirical Model for Estimating Stratospheric Ozone Vertical Distributions over China, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 352-358.  doi: 10.1007/s00376-009-0352-1
    [20] Yan XIA, Yongyun HU, Jiping LIU, Yi HUANG, Fei XIE, Jintai LIN, 2020: Stratospheric Ozone-induced Cloud Radiative Effects on Antarctic Sea Ice, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 505-514.  doi: 10.1007/s00376-019-8251-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2010
Manuscript revised: 10 May 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

What Causes the Springtime Tropospheric Ozone Maximum over Northeast Asia?

  • 1. Department of Atmospheric Science, Pusan National University, South Korea,Department of Atmospheric Science, Pusan National University, South Korea

Abstract: Scientists have long debated the relative importance of tropospheric photochemical production versus stratospheric influx as causes of the springtime tropospheric ozone maximum over northern mid-latitudes. This paper investigates whether or not stratospheric intrusion and photochemistry play a significant role in the springtime ozone maximum over Northeast Asia, where ozone measurements are sparse. We examine how tropospheric ozone seasonalities over Naha (26oN, 128oE), Kagoshima (31oN, 131oE), and Pohang (36oN, 129oE), which are located on the same meridional line, are related to the timing and location of the jet stream. The ozone seasonality shows a gradual increase from January to the maximum ozone month, which corresponds to April at Naha, May at Kagoshima, and June at Pohang. In order to examine the occurrence of stratospheric intrusion, we analyze a correlation between jet stream activity and tropospheric ozone seasonality. From these analyses, we did not find any favorable evidence supporting the hypothesis that the springtime enhancement may result from stratospheric intrusion. According to trajectory analysis for vertical and horizontal origins of the airmass, a gradual increasing tendency in ozone amounts from January until the onset of monsoon was similar to the increasing ozone formation tendency from winter to spring over mainland China, which has been observed during the build-up of tropospheric ozone over Central Europe in the winter--spring transition period due to photochemistry. Overall, the analyses suggest that photochemistry is the most important contributor to observed ozone seasonality over Northeast Asia.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return