Advanced Search
Article Contents

A Closure Study of Aerosol Hygroscopic Growth Factor during the 2006 Pearl River Delta Campaign


doi: 10.1007/s00376-009-9150-z

  • Measurements of aerosol physical, chemical and optical parameters were carried out in Guangzhou, China from 1 July to 31 July 2006 during the Pearl River Delta Campaign. The dry aerosol scattering coefficient was measured using an integrating nephelometer and the aerosol scattering coefficient for wet conditions was determined by subtracting the sum of the aerosol absorption coefficient, gas scattering coefficient and gas absorption coefficient from the atmospheric extinction coefficient. Following this, the aerosol hygroscopic growth factor, f(RH), was calculated as the ratio of wet and dry aerosol scattering coefficients. Measurements of size-resolved chemical composition, relative humidity (RH), and published functional relationships between particle chemical composition and water uptake were likewise used to find the aerosol scattering coefficients in wet and dry conditions using Mie theory for internally- or externally-mixed particle species [(NH4)2SO4, NH4NO3, NaCl, POM, EC and residue]. Closure was obtained by comparing the measured f(RH) values from the nephelometer and other in situ optical instruments with those computed from chemical composition and thermodynamics. Results show that the model can represent the observed f(RH) and is appropriate for use as a component in other higher-order models.
  • [1] ZHU Bin, WANG Honglei, SHEN Lijuan, KANG Hanqing, YU Xingna, 2013: Aerosol Spectra and New Particle Formation Observed in Various Seasons in Nanjing, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1632-1644.  doi: 10.1007/s00376-013-2202-4
    [2] Zhang Renjian, Wang Mingxing, Fu Jianzhong, 2001: Preliminary Research on the Size Distribution of???Aerosols in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 225-230.  doi: 10.1007/s00376-001-0015-3
    [3] GONG Youguo, SU Hang, CHENG Yafang, LIU Feng, WU Zhijun, HU Min, ZENG Limin, ZHANG Yuanhang, 2008: Analysis on Concentration and Source Rate of Precursor Vapors Participating in Particle Formation and Growth at Xinken in the Pearl River Delta of China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 427-436.  doi: 10.1007/s00376-008-0427-4
    [4] Boru MAI, Xuejiao DENG, Zhanqing LI, Jianjun LIU, Xiang'ao XIA, Huizheng CHE, Xia LIU, Fei LI, Yu ZOU, Maureen CRIBB, 2018: Aerosol Optical Properties and Radiative Impacts in the Pearl River Delta Region of China during the Dry Season, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 195-208.  doi: 10.1007/s00376-017-7092-4
    [5] Boru MAI, Xuejiao DENG, Fang ZHANG, Hao HE, Tian LUAN, Fei LI, Xia LIU, 2020: Background Characteristics of Atmospheric CO2 and the Potential Source Regions in the Pearl River Delta Region of China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 557-568.  doi: 10.1007/s00376-020-9238-z
    [6] Wang Mingxing, 1985: SOURCE IDENTIFICATION AND APPORTIONMENT FOR ATMOSPHERIC AEROSOL BY FACTOR ANALYSIS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 469-477.  doi: 10.1007/BF02678745
    [7] YU Xingna, ZHU Bin, YIN Yan, FAN Shuxian, CHEN Aijun, 2011: Seasonal Variation of Columnar Aerosol Optical Properties in Yangtze River Delta in China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1326-1335.  doi: 10.1007/s00376-011-0158-9
    [8] WANG Xuemei, CHEN Fei, WU Zhiyong, ZHANG Meigen, Mukul TEWARI, Alex GUENTHER, Christine WIEDINMYER, 2009: Impacts of Weather Conditions Modified by Urban Expansion on Surface Ozone: Comparison between the Pearl River Delta and Yangtze River Delta Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 962-972.  doi: 10.1007/s00376-009-8001-2
    [9] WEI Xiaolin, LIU Qian, Ka Se LAM, WANG Tijian, 2012: Impact of Precursor Levels and Global Warming on Peak Ozone Concentration in the Pearl River Delta Region of China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 635-645.  doi: 10.1007/s00376-011-1167-4
    [10] Lanqiang BAI, Dan YAO, Zhiyong MENG, Yu ZHANG, Xianxiang HUANG, Zhaoming LI, 2024: Influence of Irregular Coastlines on a Tornadic Mesovortex in the Pearl River Delta during Monsoon Season. Part II: Numerical Experiments, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3096-4
    [11] FENG Yerong, WANG Ying, PENG Taoyong, YAN Jinghua, 2007: An Algorithm on Convective Weather Potential in the Early Rainy Season over the Pearl River Delta in China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 101-110.  doi: 10.1007/s00376-007-0101-2
    [12] Chunsheng ZHAO, Yingli YU, Ye KUANG, Jiangchuan TAO, Gang ZHAO, 2019: Recent Progress of Aerosol Light-scattering Enhancement Factor Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1015-1026.  doi: 10.1007/s00376-019-8248-1
    [13] Jiang Weimei, Wang Xuemei, 1996: A 2-D Non-local Closure Model for Atmospheric Boundary Layer Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 169-182.  doi: 10.1007/BF02656860
    [14] Xinyu ZHANG, Zhicong YIN, Huijun WANG, Mingkeng DUAN, 2021: Monthly Variations of Atmospheric Circulations Associated with Haze Pollution in the Yangtze River Delta and North China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 569-580.  doi: 10.1007/s00376-020-0227-z
    [15] Lanqiang BAI, Dan YAO, Zhiyong MENG, Yu ZHANG, Xianxiang HUANG, Zhaoming LI, Xiaoding YU, 2024: Influence of Irregular Coastlines on a Tornadic Mesovortex in the Pearl River Delta during the Monsoon Season. Part I: Pre-storm Environment and Storm Evolution, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3095-5
    [16] Chuanfeng ZHAO, Yanan LI, Fang ZHANG, Yele SUN, Pucai WANG, 2018: Growth Rates of Fine Aerosol Particles at a Site near Beijing in June 2013, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 209-217.  doi: 10.1007/s00376-017-7069-3
    [17] Sang Seo PARK, Yeonjin JUNG, Yun Gon LEE, 2016: Spectral Dependence on the Correction Factor of Erythemal UV for Cloud, Aerosol, Total Ozone, and Surface Properties: A Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 865-874.  doi: 10.1007/s00376-016-5201-4
    [18] Hao HUANG, Kun ZHAO, Johnny C. L. CHAN, Dongming HU, 2023: Microphysical Characteristics of Extreme-Rainfall Convection over the Pearl River Delta Region, South China from Polarimetric Radar Data during the Pre-summer Rainy Season, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 874-886.  doi: 10.1007/s00376-022-1319-8
    [19] SHEN Shuanghe, YANG Dong, XIAO Wei, LIU Shoudong, Xuhui LEE, 2014: Constraining Anthropogenic CH4 Emissions in Nanjing and the Yangtze River Delta, China, Using Atmospheric CO2 and CH4 Mixing Ratios, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1343-1352.  doi: 10.1007/s00376-014-3231-3
    [20] Timothy LOGAN, Xiquan DONG, Baike XI, 2018: Aerosol Properties and Their Impacts on Surface CCN at the ARM Southern Great Plains Site during the 2011 Midlatitude Continental Convective Clouds Experiment, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 224-233.  doi: 10.1007/s00376-017-7033-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2010
Manuscript revised: 10 July 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Closure Study of Aerosol Hygroscopic Growth Factor during the 2006 Pearl River Delta Campaign

  • 1. College of Environmental Sciences and Engineering, Peking University, Beijing 100871,College of Environmental Sciences and Engineering, Peking University, Beijing 100871,College of Environmental Sciences and Engineering, Peking University, Beijing 100871,Institute for Urban Meteorology, China Meteorological Administration, Beijing 100081,Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea,Research Center for Environmental Changes, Academia Sinica, Taiwan,College of Environmental Sciences and Engineering, Peking University, Beijing 100871,College of Environmental Sciences and Engineering, Peking University, Beijing 100871,Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea

Abstract: Measurements of aerosol physical, chemical and optical parameters were carried out in Guangzhou, China from 1 July to 31 July 2006 during the Pearl River Delta Campaign. The dry aerosol scattering coefficient was measured using an integrating nephelometer and the aerosol scattering coefficient for wet conditions was determined by subtracting the sum of the aerosol absorption coefficient, gas scattering coefficient and gas absorption coefficient from the atmospheric extinction coefficient. Following this, the aerosol hygroscopic growth factor, f(RH), was calculated as the ratio of wet and dry aerosol scattering coefficients. Measurements of size-resolved chemical composition, relative humidity (RH), and published functional relationships between particle chemical composition and water uptake were likewise used to find the aerosol scattering coefficients in wet and dry conditions using Mie theory for internally- or externally-mixed particle species [(NH4)2SO4, NH4NO3, NaCl, POM, EC and residue]. Closure was obtained by comparing the measured f(RH) values from the nephelometer and other in situ optical instruments with those computed from chemical composition and thermodynamics. Results show that the model can represent the observed f(RH) and is appropriate for use as a component in other higher-order models.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return