Advanced Search
Article Contents

Response of Sea Surface Temperature to Chlorophyll-a Concentration in the Tropical Pacific: Annual Mean, Seasonal Cycle, and Interannual Variability


doi: 10.1007/s00376-010-0015-2

  • The response of the upper-ocean temperatures and currents in the tropical Pacific to the spatial distribution of chlorophyll-a and its seasonal cycle is investigated using a coupled atmosphere-ocean model and a stand-alone oceanic general circulation model. The spatial distribution of chlorophyll-a significantly influences the mean state of models in the tropical Pacific. The annual mean SST in the eastern equatorial Pacific decreases accompanied by a shallow thermocline and stronger currents because of shallow penetration depth of solar radiation. Equatorial upwelling dominates the heat budget in that region. Atmosphere--ocean interaction processes can further amplify such changes. The seasonal cycle of chlorophyll-a can dramatically change ENSO period in the coupled model. After introducing the seasonal cycle of chlorophyll-a concentration, the peak of the power spectrum becomes broad, and longer periods (>3 years) are found. These changes led to ENSO irregularities in the model. The increasing period is mainly due to the slow speed of Rossby waves, which are caused by the shallow mean thermocline in the northeastern Pacific.
  • [1] Ben TIAN, Hong-Li REN, 2022: Diagnosing SST Error Growth during ENSO Developing Phase in the BCC_CSM1.1(m) Prediction System, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 427-442.  doi: 10.1007/s00376-021-1189-5
    [2] ZHOU Lian-Tong, Chi-Yung TAM, ZHOU Wen, Johnny C. L. CHAN, 2010: Influence of South China Sea SST and the ENSO on Winter Rainfall over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 832-844.  doi: 10.1007/s00376--009-9102-7
    [3] Xiaofei WU, Jiangyu MAO, 2019: Decadal Changes in Interannual Dependence of the Bay of Bengal Summer Monsoon Onset on ENSO Modulated by the Pacific Decadal Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1404-1416.  doi: 10.1007/s00376-019-9043-8
    [4] LI Gang*, LI Chongyin, TAN Yanke, and BAI Tao, 2014: The Interdecadal Changes of South Pacific Sea Surface Temperature in the Mid-1990s and Their Connections with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 66-84.  doi: 10.1007/s00376-013-2280-3
    [5] KANG Xianbiao, HUANG Ronghui, WANG Zhanggui, ZHANG Rong-Hua, 2014: Sensitivity of ENSO Variability to Pacific Freshwater Flux Adjustment in the Community Earth System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1009-1021.  doi: 10.1007/s00376-014-3232-2
    [6] HUANG Ping, HUANG Ronghui, 2009: Delayed Atmospheric Temperature Response to ENSO SST: Role of High SST and the Western Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 343-351.  doi: 10.1007/s00376-009-0343-2
    [7] Yujie WU, Wansuo DUAN, 2018: Impact of SST Anomaly Events over the Kuroshio-Oyashio Extension on the "Summer Prediction Barrier", ADVANCES IN ATMOSPHERIC SCIENCES, 35, 397-409.  doi: 10.1007/s00376-017-6322-0
    [8] ZHENG Fei, ZHANG Rong-Hua, ZHU Jiang, , 2014: Effects of Interannual Salinity Variability on the Barrier Layer in the Western-Central Equatorial Pacific: A Diagnostic Analysis from Argo, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 532-542.  doi: 10.1007/s00376-013-3061-8
    [9] Juan AO, Jianqi SUN, 2016: The Impact of Boreal Autumn SST Anomalies over the South Pacific on Boreal Winter Precipitation over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 644-655.  doi: 10.1007/s00376-015-5067-x
    [10] Xiaoxuan ZHAO, Riyu LU, 2020: Vertical Structure of Interannual Variability in Cross-Equatorial Flows over the Maritime Continent and Indian Ocean in Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 173-186.  doi: 10.1007/s00376-019-9103-0
    [11] Yawen DUAN, Peili WU, Xiaolong CHEN, Zhuguo MA, 2018: Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1077-1093.  doi: 10.1007/s00376-018-7264-x
    [12] Weijie FENG, Marco Y.-T. LEUNG, Dongxiao WANG, Wen ZHOU, Oscar Y. W. ZHANG, 2022: An Extreme Drought over South China in 2020/21 Concurrent with an Unprecedented Warm Northwest Pacific and La Niña, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1637-1649.  doi: 10.1007/s00376-022-1456-0
    [13] WANG Zhiren, WU Dexing, CHEN Xue'en, QIAO Ran, 2013: ENSO Indices and Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1491-1506.  doi: 10.1007/s00376-012-2238-x
    [14] LI Shuanglin, CHEN Xiaoting, 2014: Quantifying the Response Strength of the Southern Stratospheric Polar Vortex to Indian Ocean Warming in Austral Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 492-503.  doi: 10.1007/s00376-013-2322-x
    [15] Xinyi XING, Xianghui FANG, Da PANG, Chaopeng JI, 2024: Seasonal Variation of the Sea Surface Temperature Growth Rate of ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 465-477.  doi: 10.1007/s00376-023-3005-x
    [16] Paxson K. Y. CHEUNG, Wen ZHOU, Dongxiao WANG, Marco Y. T. LEUNG, 2022: Dissimilarity among Ocean Reanalyses in Equatorial Pacific Upper-Ocean Heat Content and Its Relationship with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 67-79.  doi: 10.1007/s00376-021-1109-8
    [17] Fangxing FAN, Renping LIN, Xianghui FANG, Feng XUE, Fei ZHENG, Jiang ZHU, 2021: Influence of the Eastern Pacific and Central Pacific Types of ENSO on the South Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 12-28.  doi: 10.1007/s00376-020-0055-1
    [18] Yuanhai FU, Zhongda LIN, Tao WANG, 2021: Simulated Relationship between Wintertime ENSO and East Asian Summer Rainfall: From CMIP3 to CMIP6, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 221-236.  doi: 10.1007/s00376-020-0147-y
    [19] Yadi LI, Xichen LI, Juan FENG, Yi ZHOU, Wenzhu WANG, Yurong HOU, 2024: Uncertainties of ENSO-related Regional Hadley Circulation Anomalies within Eight Reanalysis Datasets, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 115-140.  doi: 10.1007/s00376-023-3047-0
    [20] LIN Zhongda, LU Riyu, 2009: The ENSO's Effect on Eastern China Rainfall in the Following Early Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 333-342.  doi: 10.1007/s00376-009-0333-4

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2011
Manuscript revised: 10 May 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Response of Sea Surface Temperature to Chlorophyll-a Concentration in the Tropical Pacific: Annual Mean, Seasonal Cycle, and Interannual Variability

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: The response of the upper-ocean temperatures and currents in the tropical Pacific to the spatial distribution of chlorophyll-a and its seasonal cycle is investigated using a coupled atmosphere-ocean model and a stand-alone oceanic general circulation model. The spatial distribution of chlorophyll-a significantly influences the mean state of models in the tropical Pacific. The annual mean SST in the eastern equatorial Pacific decreases accompanied by a shallow thermocline and stronger currents because of shallow penetration depth of solar radiation. Equatorial upwelling dominates the heat budget in that region. Atmosphere--ocean interaction processes can further amplify such changes. The seasonal cycle of chlorophyll-a can dramatically change ENSO period in the coupled model. After introducing the seasonal cycle of chlorophyll-a concentration, the peak of the power spectrum becomes broad, and longer periods (>3 years) are found. These changes led to ENSO irregularities in the model. The increasing period is mainly due to the slow speed of Rossby waves, which are caused by the shallow mean thermocline in the northeastern Pacific.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return