Advanced Search
Article Contents

Coupling a Terrestrial Biogeochemical Model to the Common Land Model


doi: 10.1007/s00376-010-0131-z

  • A terrestrial biogeochemical model (CASACNP) was coupled to a land surface model (the Common Land Model, CoLM) to simulate the dynamics of carbon substrate in soil and its limitation on soil respiration. The combined model, CoLM{\_}CASACNP, was able to predict long-term carbon sources and sinks that CoLM alone could not. The coupled model was tested using measurements of belowground respiration and surface fluxes from two forest ecosystems. The combined model simulated reasonably well the diurnal and seasonal variations of net ecosystem carbon exchange, as well as seasonal variation in the soil respiration rate of both the forest sites chosen for this study. However, the agreement between model simulations and actual measurements was poorer under dry conditions. The model should be tested against more measurements before being applied globally to investigate the feedbacks between the carbon cycle and climate change.
  • [1] Li Yinpeng, Ji Jinjun, 2001: Model Estimates of Global Carbon Flux between Vegetation and the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 807-818.
    [2] Dongxu YANG, Yi LIU, Liang FENG, Jing WANG, Lu YAO, Zhaonan CAI, Sihong ZHU, Naimeng LU, Daren LYU, 2021: The First Global Carbon Dioxide Flux Map Derived from TanSat Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1433-1443.  doi: 10.1007/s00376-021-1179-7
    [3] Dongxu YANG, Huifang ZHANG, Yi LIU, Baozhang CHEN, Zhaonan CAI, Daren LÜ, 2017: Monitoring Carbon Dioxide from Space: Retrieval Algorithm and Flux Inversion Based on GOSAT Data and Using CarbonTracker-China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 965-976.  doi: 10.1007/s00376-017-6221-4
    [4] Xiaofei GAO, Jiawen ZHU, Xiaodong ZENG, Minghua ZHANG, Yongjiu DAI, Duoying JI, He ZHANG, 2022: Changes in Global Vegetation Distribution and Carbon Fluxes in Response to Global Warming: Simulated Results from IAP-DGVM in CAS-ESM2, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1285-1298.  doi: 10.1007/s00376-021-1138-3
    [5] Jiawen ZHU, Xiaodong ZENG, Minghua ZHANG, Yongjiu DAI, Duoying JI, Fang LI, Qian ZHANG, He ZHANG, Xiang SONG, 2018: Evaluation of the New Dynamic Global Vegetation Model in CAS-ESM, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 659-670.  doi: 10.1007/s00376-017-7154-7
    [6] Alexey V. ELISEEV, Igor I. MOKHOV, 2011: Uncertainty of Climate Response to Natural and Anthropogenic Forcings Due to Different Land Use Scenarios, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1215-1232.  doi: 10.1007/s00376-010-0054-8
    [7] Dongxu YANG, Yi LIU, Hartmut BOESCH, Lu YAO, Antonio DI NOIA, Zhaonan CAI, Naimeng LU, Daren LYU, Maohua WANG, Jing WANG, Zengshan YIN, Yuquan ZHENG, 2021: A New TanSat XCO2 Global Product towards Climate Studies, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 8-11.  doi: 10.1007/s00376-020-0297-y
    [8] Xu Yongfu, Wang Mingxing, 1998: A Two-Dimensional Zonally Averaged Ocean Carbon Cycle Model, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 370-379.  doi: 10.1007/s00376-998-0007-7
    [9] Changyu LI, Jianping HUANG, Lei DING, Yu REN, Linli AN, Xiaoyue LIU, Jiping HUANG, 2022: The Variability of Air-sea O2 Flux in CMIP6: Implications for Estimating Terrestrial and Oceanic Carbon Sinks, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1271-1284.  doi: 10.1007/s00376-021-1273-x
    [10] WANG Jun, BAO Qing, Ning ZENG, LIU Yimin, WU Guoxiong, JI Duoying, 2013: Earth System Model FGOALS-s2: Coupling a Dynamic Global Vegetation and Terrestrial Carbon Model with the Physical Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1549-1559.  doi: 10.1007/s00376-013-2169-1
    [11] Moon-Soo PARK, Seung Jin JOO, Soon-Ung PARK, 2014: Carbon Dioxide Concentration and Flux in an Urban Residential Area in Seoul, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1101-1112.  doi: 10.1007/s00376-013-3168-y
    [12] Shutao CHEN, Jianwen ZOU, Zhenghua HU, Yanyu LU, 2019: Climate and Vegetation Drivers of Terrestrial Carbon Fluxes: A Global Data Synthesis, ADVANCES IN ATMOSPHERIC SCIENCES, , 679-696.  doi: 10.1007/s00376-019-8194-y
    [13] Yang Xin, Wang Mingxing, Huang Yao, 2001: The Climatic-induced Net Carbon Sink by Terrestrial Biosphere over 1901-1995, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1192-1206.  doi: 10.1007/s00376-001-0033-1
    [14] XU Yongfu, HUANG Yao, LI Yangchun, 2012: Summary of Recent Climate Change Studies on the Carbon and Nitrogen Cycles in the Terrestrial Ecosystem and Ocean in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1027-1047.  doi: 10.1007/s00376-012-1206-9
    [15] Jingjing LIANG, Zong-Liang YANG, Xitian CAI, Peirong LIN, Hui ZHENG, Qingyun BIAN, 2020: Modeling the Impacts of Nitrogen Dynamics on Regional Terrestrial Carbon and Water Cycles over China with Noah-MP-CN, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 679-695.  doi: 10.1007/s00376-020-9231-6
    [16] MAO Jiafu, WANG Bin, DAI Yongjiu, P. J. HANSON, M. R. LOMAS, 2007: Improvements of a Dynamic Global Vegetation Model and Simulations of Carbon and Water at an Upland-Oak Forest, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 311-322.  doi: 10.1007/s00376-007-0311-7
    [17] GAO Lijie, ZHANG Meigen, HAN Zhiwei, 2009: Model Analysis of Seasonal Variations in Tropospheric Ozone and Carbon Monoxide over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 312-318.  doi: 10.1007/s00376-009-0312-9
    [18] WANG Gengchen, BAI Jianhui, KONG Qinxin, Alexander EMILENKO, 2005: Black Carbon Particles in the Urban Atmosphere in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 640-646.  doi: 10.1007/BF02918707
    [19] Ning ZENG, Kejun JIANG, Pengfei HAN, Zeke HAUSFATHER, Junji CAO, Daniel KIRK-DAVIDOFF, Shaukat ALI, Sheng ZHOU, 2022: The Chinese Carbon-Neutral Goal: Challenges and Prospects, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1229-1238.  doi: 10.1007/s00376-021-1313-6
    [20] WANG Zhili, ZHANG Hua, SHEN Xueshun, 2011: Radiative Forcing and Climate Response Due to Black Carbon in Snow and Ice, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1336-1344.  doi: 10.1007/s00376-011-0117-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2011
Manuscript revised: 10 September 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Coupling a Terrestrial Biogeochemical Model to the Common Land Model

  • 1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA,CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia,State Key Laboratory of Earth Surface Processes and Resource Ecology,College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875 and South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650

Abstract: A terrestrial biogeochemical model (CASACNP) was coupled to a land surface model (the Common Land Model, CoLM) to simulate the dynamics of carbon substrate in soil and its limitation on soil respiration. The combined model, CoLM{\_}CASACNP, was able to predict long-term carbon sources and sinks that CoLM alone could not. The coupled model was tested using measurements of belowground respiration and surface fluxes from two forest ecosystems. The combined model simulated reasonably well the diurnal and seasonal variations of net ecosystem carbon exchange, as well as seasonal variation in the soil respiration rate of both the forest sites chosen for this study. However, the agreement between model simulations and actual measurements was poorer under dry conditions. The model should be tested against more measurements before being applied globally to investigate the feedbacks between the carbon cycle and climate change.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return