Advanced Search
Article Contents

Impacts of the MJO on Winter Rainfall and Circulation in China


doi: 10.1007/s00376-010-9118-z

  • Impacts of the MJO on winter rainfall and circulation in China are investigated using a real-time multivariate MJO index. Composite results using the daily rainfall anomalies and ``rainy day'' anomalies according to eight different MJO phases show that the MJO has considerable influence on winter rainfall in China. Rainfall anomalies show systematic and substantial changes (enhanced/suppressed) in the Yangtze River Basin and South China with the eastward propagation of the MJO convective center from the Indian Ocean to the western Pacific. When the MJO is in phase 2 and 3 (MJO convective center is located over the Indian Ocean), rainfall probability is significantly enhanced. While in phase 6 and 7 (MJO convective center is over the western Pacific), rainfall probability is significantly reduced. MJO in winter influences the rainfall in China mainly through modulating the circulation in the subtropics and mid-high latitudes. For the subtropics, MJO influences the northward moisture transport coming from the Bay of Bengal and the South China Sea by modulating the southern trough of the Bay of Bengal and the western Pacific subtropical high. For the mid-high latitudes, the propagation of the low frequency perturbations associated with the eastward-propagating MJO convection modulate the circulation in the mid-high latitudes, e.g. the East Asian winter monsoon and the low trough over central Asia.
  • [1] Yun-Young LEE, Richard GROTJAHN, 2019: Evidence of Specific MJO Phase Occurrence with Summertime California Central Valley Extreme Hot Weather, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 589-602.  doi: 10.1007/s00376-019-8167-1
    [2] Yanying CHEN, Ning JIANG, Yang AI, Kang XU, Longjiang MAO, 2023: Influences of MJO-induced Tropical Cyclones on the Circulation-Convection Inconsistency for the 2021 South China Sea Summer Monsoon Onset, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 262-272.  doi: 10.1007/s00376-022-2103-5
    [3] YUE Caijun, GAO Shouting, LIU Lu, LI Xiaofan, 2015: A Diagnostic Study of the Asymmetric Distribution of Rainfall during the Landfall of Typhoon Haitang (2005), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1419-1430.  doi: 10.1007/s00376-015-4246-0
    [4] ZHENG Kailin, CHEN Baojun, 2014: Sensitivities of Tornadogenesis to Drop Size Distribution in a Simulated Subtropical Supercell over Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 657-668.  doi: 10.1007/s00376-013-3143-7
    [5] YUAN Zhuojian, QI Jindian, GAO Shouting, FENG Yerong, XU Pengcheng, WU Naigeng, 2014: New Evidence for Improving Omega Estimation by Explicitly Considering Horizontal Divergence, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 449-456.  doi: 10.1007/s00376-013-3003-5
    [6] Keyue ZHANG, Juan LI, Zhiwei ZHU, Tim LI, 2021: Implications from Subseasonal Prediction Skills of the Prolonged Heavy Snow Event over Southern China in Early 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1873-1888.  doi: 10.1007/s00376-021-0402-x
    [7] Bian HE, Qing BAO*, Xiaocong WANG, Linjiong ZHOU, Xiaofei WU, Yimin LIU, Guoxiong WU, Kangjun CHEN, Sicheng HE, Wenting HU, Jiandong LI, Jinxiao LI, Guokui NIAN, Lei WANG, Jing YANG, Minghua ZHANG, Xiaoqi ZHANG, 2019: CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, , 771-778.  doi: 10.1007/s00376-019-9027-8
    [8] Lifeng LI, Xin LI, Xiong CHEN, Chongyin LI, Jianqi ZHANG, Yulong SHAN, 2020: Modulation of Madden-Julian Oscillation Activity by the Tropical Pacific-Indian Ocean Associated Mode, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1375-1388.  doi: 10.1007/s00376-020-0002-1
    [9] Jianpu BIAN, Juan FANG, Guanghua CHEN, Chengji LIU, 2018: Circulation Features Associated with the Record-breaking Typhoon Silence in August 2014, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1321-1336.  doi: 10.1007/s00376-018-7294-4
    [10] Ping LIANG, Zeng-Zhen HU, Yihui DING, Qiwen QIAN, 2021: The Extreme Mei-yu Season in 2020: Role of the Madden-Julian Oscillation and the Cooperative Influence of the Pacific and Indian Oceans, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2040-2054.  doi: 10.1007/s00376-021-1078-y
    [11] JIA Xiaolong, LI Chongyin, LING Jian, Chidong ZHANG, 2008: Impacts of a GCM's Resolution on MJO Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 139-156.  doi: 10.1007/s00376-008-0139-9
    [12] MEI Shuangli, Tim LI, CHEN Wen, 2015: Three-type MJO Initiation processes over the Western Equatorial Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1208-1216.  doi: 10.1007/s00376-015-4201-0
    [13] Ji Jinjun, 1986: A SIMPLIFIED MODEL STUDY ON THE SHORT-TERM CLIMATIC EFFECT OF SNOWFALL ANOMALY IN MID-HIGH LATITUDES, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 443-453.  doi: 10.1007/BF02657934
    [14] Xuben LEI, Wenjun ZHANG, Pang-Chi HSU, Chao LIU, 2021: Distinctive MJO Activity during the Boreal Winter of the 2015/16 Super El Niño in Comparison with Other Super El Niño Events, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 555-568.  doi: 10.1007/s00376-020-0261-x
    [15] Jianping LI, Fei ZHENG, Cheng SUN, Juan FENG, Jing WANG, 2019: Pathways of Influence of the Northern Hemisphere Mid-high Latitudes on East Asian Climate: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 902-921.  doi: 10.1007/s00376-019-8236-5
    [16] ZHANG Rong-Hua, WANG Zhanggui, 2013: Model Evidence for Interdecadal Pathway Changes in the Subtropics and Tropics of the South Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1-9.  doi: 10.1007/s00376-012-2048-1
    [17] YUAN Zhuojian, JIAN Maoqiu, 2003: A Linear Diagnostic Equation for the Nonhydrostatic Vertical Motion W in Severe Storms, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 875-881.  doi: 10.1007/BF02915511
    [18] Baofeng JIAO, Lingkun RAN, Na LI, Ren CAI, Tao QU, Yushu ZHOU, 2023: Comparative Analysis of the Generalized Omega Equation and Generalized Vertical Motion Equation, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 856-873.  doi: 10.1007/s00376-022-1435-5
    [19] Tian Yongxiang, Luo Zhexian, 1994: Vertical Structure of Beta Gyres and Its Effect on Tropical Cyclone Motion, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 43-50.  doi: 10.1007/BF02656992
    [20] LING Jian, LI Chongyin, ZHOU Wen, JIA Xiaolong, Chidong ZHANG, 2013: Effect of Boundary Layer Latent Heating on MJO Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 101-115.  doi: 10.1007/s00376-012-2031-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2011
Manuscript revised: 10 May 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Impacts of the MJO on Winter Rainfall and Circulation in China

  • 1. National Climate Center, China Meteorological Administration, Beijing 100081,National Climate Center, China Meteorological Administration, Beijing 100081,National Climate Center, China Meteorological Administration, Beijing 100081,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101

Abstract: Impacts of the MJO on winter rainfall and circulation in China are investigated using a real-time multivariate MJO index. Composite results using the daily rainfall anomalies and ``rainy day'' anomalies according to eight different MJO phases show that the MJO has considerable influence on winter rainfall in China. Rainfall anomalies show systematic and substantial changes (enhanced/suppressed) in the Yangtze River Basin and South China with the eastward propagation of the MJO convective center from the Indian Ocean to the western Pacific. When the MJO is in phase 2 and 3 (MJO convective center is located over the Indian Ocean), rainfall probability is significantly enhanced. While in phase 6 and 7 (MJO convective center is over the western Pacific), rainfall probability is significantly reduced. MJO in winter influences the rainfall in China mainly through modulating the circulation in the subtropics and mid-high latitudes. For the subtropics, MJO influences the northward moisture transport coming from the Bay of Bengal and the South China Sea by modulating the southern trough of the Bay of Bengal and the western Pacific subtropical high. For the mid-high latitudes, the propagation of the low frequency perturbations associated with the eastward-propagating MJO convection modulate the circulation in the mid-high latitudes, e.g. the East Asian winter monsoon and the low trough over central Asia.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return