An Assessment of Storage Terms in the Surface Energy Balance of a Subalpine Meadow in Northwest China
-
Graphical Abstract
-
Abstract
The heat storage terms in the soil--vegetation--atmosphere system may play an important role in the surface energy budget. In this paper, we evaluate the heat storage terms of a subalpine meadow based on a field experiment conducted in the complex terrain of the eastern Qilian Mountains of Northwest China and their impact on the closure of the surface energy balance under such non-ideal conditions. During the night, the average sum of the storage terms was -5.5 W m-2, which corresponded to 10.4% of net radiation. The sum of the terms became positive at 0730 LST and negative again at about 1500 LST, with a maximum value of 19 W m-2 observed at approximately 0830 LST. During the day, the average of the sum of the storage terms was 6.5 W m-2, which corresponded to 4.0% of net radiation. According to the slopes obtained when linear regression of the net radiation and partitioned fluxes was forced through the origin, there is an imbalance of 14.0% in the subalpine meadow when the storage terms are not considered in the surface energy balance. This imbalance was improved by 3.4% by calculating the sum of the storage terms. The soil heat storage flux gave the highest contribution (1.59%), while the vegetation enthalpy change and the rest of the storage terms were responsible for improvements of 1.04% and 0.77%, respectively.
-
-