Advanced Search
Article Contents

Development of Cloud Detection Methods Using CFH, GTS1, and RS80 Radiosondes


doi: 10.1007/s00376-011-0215-4

  • The accuracies of three instruments in measuring atmospheric column humidity were assessed during an upper troposphere and lower stratosphere observation campaign conducted from 7 to 13 August 2009 in Kunming, China. The three instruments are a cryogenic frost-point hygrometer (CFH), a Vaisala RS80 radiosonde (RS80), and a GTS1 radiosonde (GTS1). The accuracy of relative humidity (RH) measurements made by the CFH, GTS1, and RS80 was similar between the surface and 500 hPa (~5.5 km above sea level). However, above 500 hPa, the errors in RH measurements made by the RS80, relative to measurements made by the CFH, are much less than those detected with the GTS1. Three different retrieval methods for determining cloud boundaries from CFH, RS80, and GTS1 measurements were developed and take into account the differences in accuracy among the three instruments. The method for the CFH is based on RH thresholds at all levels, which demands high accuracy. Given that the accuracy of RH measurements decreases at higher altitudes, the cloud detection methods for RS80 and GTS1 are different for different altitude ranges. Below 5 km, the methods for the RS80 and the GTS1 are similar to that of the CFH; above 5 km, the methods for the RS80 and the GTS1 are both developed based on the second-order derivatives of temperature and RH with respect to height, but with different criteria applied. Comparisons of cloud-layer retrievals derived from the three measurements are also made.
  • [1] WANG Fang, XIN Xiaoge, WANG Zaizhi, CHENG Yanjie, ZHANG Jie, YANG Song, 2014: Evaluation of Cloud Vertical Structure Simulated by Recent BCC_AGCM Versions through Comparison With CALIPSO-GOCCP Data, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 721-733.  doi: 10.1007/s00376-013-3099-7
    [2] BIAN Jianchun, CHEN Hongbin, Holger VOMEL, DUAN Yunjun, XUAN Yuejian, LU Daren, 2011: Intercomparison of Humidity and Temperature Sensors: GTS1, Vaisala RS80, and CFH, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 139-146.  doi: 10.1007/s00376-010-9170-8
    [3] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [4] DING Yihui, REN Guoyu, ZHAO Zongci, XU Ying, LUO Yong, LI Qiaoping, ZHANG Jin, 2007: Detection, Causes and Projection of Climate Change over China: An Overview of Recent Progress, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 954-971.  doi: 10.1007/s00376-007-0954-4
    [5] Jeong-Hyeong LEE, Byungsoo KIM, Keon-Tae SOHN, Won-Tae KOWN, Seung-Ki MIN, 2005: Climate Change Signal Analysis for Northeast Asian Surface Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 159-171.  doi: 10.1007/BF02918506
    [6] Xi WANG, Zheng GUO, Yipeng HUANG, Hongjie FAN, Wanbiao LI, 2017: A Cloud Detection Scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 16-25.  doi: 10.1007/s00376-016-6033-y
    [7] Chao LIU, Shu YANG, Di DI, Yuanjian YANG, Chen ZHOU, Xiuqing HU, Byung-Ju SOHN, 2022: A Machine Learning-based Cloud Detection Algorithm for the Himawari-8 Spectral Image, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1994-2007.  doi: 10.1007/s00376-021-0366-x
    [8] LI Xiangshu, GUO Xueliang, FU Danhong, 2013: TRMM-retrieved Cloud Structure and Evolution of MCSs over the Northern South China Sea and Impacts of CAPE and Vertical Wind Shear, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 77-88.  doi: 10.1007/s00376-012-2055-2
    [9] LI Qingxiang, DONG Wenjie, 2009: Detection and Adjustment of Undocumented Discontinuities in Chinese Temperature Series Using a Composite Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 143-153.  doi: 10.1007/s00376-009-0143-8
    [10] WANG Gaili, LIU Liping, LIU Zhishen, LU Bo, MU Rong, 2011: The Application of Sea-Surface Wind Detection with Doppler Lidar in Olympic Sailing, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1471-1480.  doi: 10.1007/s00376-011-9189-5
    [11] LIU Liping, Qin XU, Pengfei ZHANG, Shun LIU, 2008: Automated Detection of Contaminated Radar Image Pixels in Mountain Areas, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 778-790.  doi: 10.1007/s00376-008-0778-x
    [12] Huang Meiyuan, Hong Yanchao, 1984: INHOMOGENEOUS FEATURES IN ME1-YU FRONTAL CLOUD SYSTEM, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 95-111.  doi: 10.1007/BF03187620
    [13] Tian Yongxiang, Luo Zhexian, 1994: Vertical Structure of Beta Gyres and Its Effect on Tropical Cyclone Motion, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 43-50.  doi: 10.1007/BF02656992
    [14] Myoung-Hwan AHN, Eun-Ha SOHN, Byong-Jun HWANG, 2003: A New Algorithm for Sea Fog/Stratus Detection Using GMS-5 IR Data, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 899-913.  doi: 10.1007/BF02915513
    [15] NIU Tao, CHEN Longxun, ZHOU Zijiang, 2004: The Characteristics of Climate Change over the Tibetan Plateau in the Last 40 Years and the Detection of Climatic Jumps, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 193-203.  doi: 10.1007/BF02915705
    [16] Weiwen WANG, Wen ZHOU, 2017: Statistical Modeling and Trend Detection of Extreme Sea Level Records in the Pearl River Estuary, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 383-396.  doi: 10.1007/s00376-016-6041-y
    [17] Huangjian WU, Xiao TANG, Zifa WANG, Lin WU, Miaomiao LU, Lianfang WEI, Jiang ZHU, 2018: Probabilistic Automatic Outlier Detection for Surface Air Quality Measurements from the China National Environmental Monitoring Network, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1522-1532.  doi: 10.1007/s00376-018-8067-9
    [18] Li Jun, Zhou Fengxian, 1992: On Accurate Detection of Oceanic Features from Satellite IR Data Using ICSED Method, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 373-382.  doi: 10.1007/BF02656948
    [19] Wanling LI, Xin HAO, Li WANG, Yuqing LI, Jiandong LI, Huixin LI, Tingting HAN, 2022: Detection and Attribution of Changes in Thermal Discomfort over China during 1961−2014 and Future Projections, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 456-470.  doi: 10.1007/s00376-021-1168-x
    [20] D. R. Johnson, Zhuojian Yuan, 1998: On the Forcing of the Radial-vertical Circulation within Cyclones-Part 1: Concepts and Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 346-369.  doi: 10.1007/s00376-998-0006-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2012
Manuscript revised: 10 March 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Development of Cloud Detection Methods Using CFH, GTS1, and RS80 Radiosondes

  • 1. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Kunming National Reference Climatological Station, Kunming 650034,Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA

Abstract: The accuracies of three instruments in measuring atmospheric column humidity were assessed during an upper troposphere and lower stratosphere observation campaign conducted from 7 to 13 August 2009 in Kunming, China. The three instruments are a cryogenic frost-point hygrometer (CFH), a Vaisala RS80 radiosonde (RS80), and a GTS1 radiosonde (GTS1). The accuracy of relative humidity (RH) measurements made by the CFH, GTS1, and RS80 was similar between the surface and 500 hPa (~5.5 km above sea level). However, above 500 hPa, the errors in RH measurements made by the RS80, relative to measurements made by the CFH, are much less than those detected with the GTS1. Three different retrieval methods for determining cloud boundaries from CFH, RS80, and GTS1 measurements were developed and take into account the differences in accuracy among the three instruments. The method for the CFH is based on RH thresholds at all levels, which demands high accuracy. Given that the accuracy of RH measurements decreases at higher altitudes, the cloud detection methods for RS80 and GTS1 are different for different altitude ranges. Below 5 km, the methods for the RS80 and the GTS1 are similar to that of the CFH; above 5 km, the methods for the RS80 and the GTS1 are both developed based on the second-order derivatives of temperature and RH with respect to height, but with different criteria applied. Comparisons of cloud-layer retrievals derived from the three measurements are also made.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return