Advanced Search
Article Contents

The Regional Surface Heating Field over the Heterogeneous Landscape of the Tibetan Plateau Using MODIS and In-Situ Data


doi: 10.1007/s00376-011-1008-5

  • In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and it in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau (TP) area. Four images of MODIS data (i.e., 30 January 2007, 15 April 2007, 1 August 2007, and 25 October 2007) were used in this study for comparison among winter, spring, summer, and autumn. The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP). The results show the following: (1) The derived surface heating field for the TP area was in good accord with the land-surface status, showing a wide range of values due to the strong contrast of surface features in the area. (2) The derived surface heating field for the TP was very close to the field measurements (observations). The APD (absolute percent difference) between the derived results and the field observations was <10%. (3) The mean surface heating field over the TP increased from January to April to August, and decreased in October. Therefore, the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology. The limitations and further improvement of this method are also discussed.
  • [1] ZHONG Lei, MA Yaoming, Zhongbo SU, Mhd. Suhyb SALAMA, 2010: Estimation of Land Surface Temperature over the Tibetan Plateau Using AVHRR and MODIS Data, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1110-1118.  doi: 10.1007/s00376-009-9133-0
    [2] Xiao ZHANG, Saichun TAN, Guangyu SHI, 2018: Comparison between MODIS-derived Day and Night Cloud Cover and Surface Observations over the North China Plain, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 146-157.  doi: 10.1007/s00376-017-7070-x
    [3] Fangfang HUANG, Weiqiang MA, Binbin WANG, Zeyong HU, Yaoming MA, Genhou SUN, Zhipeng XIE, Yun LIN, 2017: Air Temperature Estimation with MODIS Data over the Northern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 650-662.  doi: 10.1007/s00376-016-6152-5
    [4] WANG Hesong, JIA Gensuo, 2013: Regional Estimates of Evapotranspiration over Northern China Using a Remote-sensing-based Triangle Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1479-1490.  doi: 10.1007/s00376-013-2294-x
    [5] Xuehua FAN, Xiang'ao XIA, Hongbin CHEN, 2018: Can MODIS Detect Trends in Aerosol Optical Depth over Land?, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 135-145.  doi: 10.1007/s00376-017-7017-2
    [6] Jie ZHANG, Jinyuan Xin, Wenyu ZHANG, Shigong WANG, Lili WANG, Wei XIE, Guojie XIAO, Hela PAN, Lingbin KONG, 2017: Validation of MODIS C6 AOD Products Retrieved by the Dark Target Method in the Beijing-Tianjin-Hebei Urban Agglomeration, China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 993-1002.  doi: 10.1007/s00376-016-6217-5
    [7] Yunfei FU, Jiachen ZHU, Yuanjian YANG, Renmin YUAN, Guosheng LIU, Tao XIAN, Peng LIU, 2017: Grid-cell Aerosol Direct Shortwave Radiative Forcing Calculated Using the SBDART Model with MODIS and AERONET Observations: An Application in Winter and Summer in Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 952-964.  doi: 10.1007/s00376-017-6226-z
    [8] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [9] Li Guo ping, Lu Jinghua, Jin Bingling, Bu Nima, 2001: The Effects of Anomalous Snow Cover of the Tibetan Plateau on the Surface Heating, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1207-1214.  doi: 10.1007/s00376-001-0034-0
    [10] LI Ying, HU Zeyong, 2009: A Study on Parameterization of Surface Albedo over Grassland Surface in the Northern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 161-168.  doi: 10.1007/s00376-009-0161-6
    [11] WANG Leidi, LÜ Daren, HE Qing, 2015: The Impact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 759-771.  doi: 10.1007/s00376-014-4131-2
    [12] YANG Kun, Toshio KOIKE, 2008: Satellite Monitoring of the Surface Water and Energy Budget in the Central Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 974-985.  doi: 10.1007/s00376-008-0974-8
    [13] Jiang Hao, Wang Keli, 2001: Analysis of the Surface Temperature on the Tibetan Plateau from Satellite, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1215-1223.  doi: 10.1007/s00376-001-0035-z
    [14] Liu Huizhi, Zhang Hongsheng, Bian Lin'gen, Chen Jiayi, Zhou Mingyu, Xu Xiangde, Li Shiming, Zhao Yijun, 2002: Characteristics of Micrometeorology in the Surface Layer in the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 73-88.  doi: 10.1007/s00376-002-0035-7
    [15] Yu ZHAO, Anmin DUAN, Guoxiong WU, 2018: Interannual Variability of Late-spring Circulation and Diabatic Heating over the Tibetan Plateau Associated with Indian Ocean Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 927-941.  doi: 10.1007/s00376-018-7217-4
    [16] Anmin DUAN, Ruizao SUN, Jinhai HE, 2017: Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land-Air-Sea Interaction Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 157-168.  doi: 10.1007/s00376-016-6008-z
    [17] BIAN Lingen, XU Xiangde, LU Longhua, GAO Zhiqiu, ZHOU Mingyu, LIU Huizhi, 2003: Analyses of Turbulence Parameters in the Near-Surface Layer at Qamdo of the Southeastern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 369-378.  doi: 10.1007/BF02690795
    [18] Xiaolei CHEN, Yimin LIU, Guoxiong WU, 2017: Understanding the Surface Temperature Cold Bias in CMIP5 AGCMs over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1447-1460.  doi: 10.1007s00376-017-6326-9
    [19] Lihua ZHU, Gang HUANG, Guangzhou FAN, Xia QU, Guijie ZHAO, Wei HUA, 2017: Evolution of Surface Sensible Heat over the Tibetan Plateau Under the Recent Global Warming Hiatus, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1249-1262.  doi: 10.1007/s00376-017- 6298-9
    [20] Yang YANG, Rongcai REN, 2017: On the Contrasting Decadal Changes of Diurnal Surface Temperature Range between the Tibetan Plateau and Southeastern China during the 1980s-2000s, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 181-198.  doi: 10.1007/s00376-016-6077-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2012
Manuscript revised: 10 January 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Regional Surface Heating Field over the Heterogeneous Landscape of the Tibetan Plateau Using MODIS and In-Situ Data

  • 1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences, Dingri 858200,Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, Graduate University of Chinese Academy of Sciences, Beijing 100049,Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences, Dingri 858200,Key Laboratory for Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000

Abstract: In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and it in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau (TP) area. Four images of MODIS data (i.e., 30 January 2007, 15 April 2007, 1 August 2007, and 25 October 2007) were used in this study for comparison among winter, spring, summer, and autumn. The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP). The results show the following: (1) The derived surface heating field for the TP area was in good accord with the land-surface status, showing a wide range of values due to the strong contrast of surface features in the area. (2) The derived surface heating field for the TP was very close to the field measurements (observations). The APD (absolute percent difference) between the derived results and the field observations was <10%. (3) The mean surface heating field over the TP increased from January to April to August, and decreased in October. Therefore, the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology. The limitations and further improvement of this method are also discussed.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return