Advanced Search
Article Contents

Variations of the Summer Somali and Australia Cross-Equatorial Flows and the Implications for the Asian Summer Monsoon


doi: 10.1007/s00376-011-1120-6

  • The temporal variations during 1948--2010 and vertical structures of the summer Somali and Australia cross-equatorial flows (CEFs) and the implications for the Asian summer monsoon were explored in this study. The strongest southerly and northerly CEFs exist at 925 hPa and 150 hPa level, respectively. The low-level Somali (LLS) CEFs were significantly connected with the rainfall in most regions of India (especially the monsoon regions), except in a small area in southwest India. In comparison to the climatology, the low-level Australia (LLA) CEFs exhibited stronger variations at interannual time scale and are more closely connected to the East Asian summer monsoon circulation than to the LLS CEFs. The East Asian summer monsoon circulation anomalies related to stronger LLA CEFs were associated with less water vapor content and less rainfall in the region between the middle Yellow River and Yangtze River and with more water vapor and more rainfall in southern China. The sea-surface temperature anomalies east of Australia related to summer LLA CEFs emerge in spring and persist into summer, with implications for the seasonal prediction of summer rainfall in East Asia. The connection between the LLA CEFs and East Asian summer monsoon rainfall may be partly due to its linkage with El Nino-Southern Oscillation. In addition, both the LLA and LLS CEFs exhibited interdecadal shifts in the late 1970s and the late 1990s, consistent with the phase shifts of Pacific Decadal Oscillation (PDO).
  • [1] WU Bingyi, WANG Dongxiao, HUANG Ronghui, 2003: Relationship between Sea Level Pressures of the Winter Tropical Western Pacific and the Subsequent Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 496-510.  doi: 10.1007/BF02915494
    [2] LI Wei-Wei, WANG Chunzai, WANG Dongxiao, YANG Lei, DENG Yi, 2012: Modulation of Low-Latitude West Wind on Abnormal Track and Intensity of Tropical Cyclone Nargis (2008) in the Bay of Bengal, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 407-421.  doi: 10.1007/s00376-011-0229-y
    [3] Peiling FU, Kefeng ZHU, Kun ZHAO, Bowen ZHOU, Ming XUE, 2019: Role of the Nocturnal Low-level Jet in the Formation of the Morning Precipitation Peak over the Dabie Mountains, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 15-28.  doi: 10.1007/s00376-018-8095-5
    [4] Zhong Zhong, Wang Hanjie, 2000: A Study of the Relationship between Low-level Jet and Inversion Layer over an Agroforest Ecosystem in East China Plain?, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 299-310.  doi: 10.1007/s00376-000-0011-z
    [5] Yuhan LUO, Yu DU, 2023: The Roles of Low-level Jets in “21·7” Henan Extremely Persistent Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 350-373.  doi: 10.1007/s00376-022-2026-1
    [6] Ting WANG, Ke WEI, Jiao MA, 2021: Atmospheric Rivers and Mei-yu Rainfall in China: A Case Study of Summer 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2137-2152.  doi: 10.1007/s00376-021-1096-9
    [7] LIU Xiangwen, WU Tongwen, YANG Song, JIE Weihua, NIE Suping, LI Qiaoping, CHENG Yanjie, LIANG Xiaoyun, 2015: Performance of the Seasonal Forecasting of the Asian Summer Monsoon by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1156-1172.  doi: 10.1007/s00376-015-4194-8
    [8] Bueh Cholaw, Ji Liren, Sun Shuqing, Cui Maochang, 2001: EAWM-Related Air-Sea-Land Interaction and the Asian Summer Monsoon Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 659-673.
    [9] YAN Renchang, BIAN Jianchun, 2015: Tracing the Boundary Layer Sources of Carbon Monoxide in the Asian Summer Monsoon Anticyclone Using WRF-Chem, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 943-951.  doi: 10.1007/s00376-014-4130-3
    [10] Song YANG, WEN Min, Rongqian YANG, Wayne HIGGINS, ZHANG Renhe, 2011: Impacts of Land Process on the Onset and Evolution of Asian Summer Monsoon in the NCEP Climate Forecast System, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1301-1317.  doi: 10.1007/s00376-011-0167-8
    [11] BIAN Jianchun, YAN Renchang, CHEN Hongbin, Lu Daren, Steven T. MASSIE, 2011: Formation of the Summertime Ozone Valley over the Tibetan Plateau: The Asian Summer Monsoon and Air Column Variations, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1318-1325.  doi: 10.1007/s00376-011-0174-9
    [12] ZOU Liwei, ZHOU Tianjun, 2015: Asian Summer Monsoon Onset in Simulations and CMIP5 Projections Using Four Chinese Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 794-806.  doi: 10.1007/s00376-014-4053-z
    [13] Lu Peisheng, 1995: Evolution of Asian Summer Monsoon and the Slowly Varying Disturbances, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 311-318.  doi: 10.1007/BF02656979
    [14] Yiran GUO, Jie CAO, Hui LI, Jian WANG, Yuchao DING, 2016: Simulation of the Interface between the Indian Summer Monsoon and the East Asian Summer Monsoon: Intercomparison between MPI-ESM and ECHAM5/MPI-OM, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 294-308.  doi: 10.1007/s00376-015-5073-z
    [15] LU Riyu, Buwen DONG, 2008: Response of the Asian Summer Monsoon to Weakening of Atlantic Thermohaline Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 723-736.  doi: 10.1007/s00376-008-0723-z
    [16] Min WEI, 2005: A Coupled Model Study on the Intensification of the Asian Summer Monsoon in IPCC SRES Scenarios, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 798-806.  doi: 10.1007/BF02918680
    [17] CHEN Bin, XU Xiang-De, YANG Shuai, ZHANG Wei, 2012: On the Temporal and Spatial Structure of Troposphere-to- Stratosphere Transport in the Lowermost Stratosphere over the Asian Monsoon Region during Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1305-1317.  doi: 10.1007/s00376-012-1171-3
    [18] P.N. Mahajan, V.R. Mujumdar, S.P. Ghanekar, 1989: Excitation of Low-level Jet as Seen by GOES (I-O) Satellite off the Somali Coast, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 475-482.  doi: 10.1007/BF02659081
    [19] Peng Jiayi, Wu Rongsheng, Wang Yuan, 2002: Initiation Mechanism of Meso-β Scale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 870-884.  doi: 10.1007/s00376-002-0052-6
    [20] XIONG Zhe, WANG Shuyu, ZENG Zhaomei, FU Congbin, 2003: Analysis of Simulated Heavy Rain over the Yangtze River Valley During 11-30 June 1998 Using RIEMS, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 815-824.  doi: 10.1007/BF02915407

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2012
Manuscript revised: 10 May 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Variations of the Summer Somali and Australia Cross-Equatorial Flows and the Implications for the Asian Summer Monsoon

  • 1. Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029

Abstract: The temporal variations during 1948--2010 and vertical structures of the summer Somali and Australia cross-equatorial flows (CEFs) and the implications for the Asian summer monsoon were explored in this study. The strongest southerly and northerly CEFs exist at 925 hPa and 150 hPa level, respectively. The low-level Somali (LLS) CEFs were significantly connected with the rainfall in most regions of India (especially the monsoon regions), except in a small area in southwest India. In comparison to the climatology, the low-level Australia (LLA) CEFs exhibited stronger variations at interannual time scale and are more closely connected to the East Asian summer monsoon circulation than to the LLS CEFs. The East Asian summer monsoon circulation anomalies related to stronger LLA CEFs were associated with less water vapor content and less rainfall in the region between the middle Yellow River and Yangtze River and with more water vapor and more rainfall in southern China. The sea-surface temperature anomalies east of Australia related to summer LLA CEFs emerge in spring and persist into summer, with implications for the seasonal prediction of summer rainfall in East Asia. The connection between the LLA CEFs and East Asian summer monsoon rainfall may be partly due to its linkage with El Nino-Southern Oscillation. In addition, both the LLA and LLS CEFs exhibited interdecadal shifts in the late 1970s and the late 1990s, consistent with the phase shifts of Pacific Decadal Oscillation (PDO).

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return