Advanced Search
Article Contents

Using Synoptic Classification and Trajectory Analysis to Assess Air Quality during the Winter Heating Period in Urumqi, China


doi: 10.1007/s00376-011-9234-4

  • Synoptic patterns identified by an automated procedure employing principal- component analysis and a two-stage cluster analysis, and backward trajectory analysis clustered by the HYSPLIT4.9 model were used to examine air quality patterns over Urumqi, China, one of the most heavily polluted cities in the world. Six synoptic patterns representing different atmospheric circulation patterns and air-mass characteristics were classified during the winter heating periods from 2001 to 2008, and seven trajectory clusters representing different paths of air masses arriving at Urumqi were calculated during the winter heating periods from 2005 to 2008. Then air quality was evaluated using these two approaches, and significant variations were found across both synoptic patterns and trajectory clusters. The heaviest air-pollution episodes occurred when Urumqi was either in an extremely cold, strong anticyclone or at the front of a migrating cyclone. Both conditions were characterized by with light winds, cold, wet surface air, and relatively dry upper air. Urumqi was predominately influenced by air masses from the southwest and from local areas. Air pollution index (API) levels were highest for air masses originating from the southwest with a longer path or for the local area, because of transport from semi-desert/desert regions by strong winds and because of local heavy pollution emissions, respectively. The interactions between these two analytical approaches showed that poor diffusion conditions, together with local circulation, enhanced air pollution, besides, regional air-mass transport caused by strong winds contributed to serious air quality under relatively good diffusion conditions.
  • [1] Xia LI, Keming ZHAO, Shiyuan ZHONG, Xiaojing YU, Zhimin FENG, Yuting ZHONG, Ayitken MAULEN, Shuting LI, 2023: Evolution of Meteorological Conditions during a Heavy Air Pollution Event under the Influence of Shallow Foehn in Urumqi, China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 29-43.  doi: 10.1007/s00376-022-1422-x
    [2] Runhua Yang, William H. Klein, 1989: The Synoptic Climatology of Monthly Mean Surface Temperature in Asia in Relation to the 700 hPa Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 227-238.  doi: 10.1007/BF02658018
    [3] Chang Ki KIM, Seong Soo YUM, 2010: Local Meteorological and Synoptic Characteristics of Fogs Formed over Incheon International Airport in the West Coast of Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 761-776.  doi: 10.1007/s00376-009-9090-7
    [4] Naifang BEI, Xia LI, Qiyuan WANG, Suixin LIU, Jiarui WU, Jiayi LIANG, Lang LIU, Ruonan WANG, Guohui LI, 2021: Impacts of Aerosol−Radiation Interactions on the Wintertime Particulate Pollution under Different Synoptic Patterns in the Guanzhong Basin, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1141-1152.  doi: 10.1007/s00376-020-0329-7
    [5] Xuan LI, Ruiqiang DING, Jianping LI, 2019: Determination of the Backward Predictability Limit and Its Relationship with the Forward Predictability Limit, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 669-677.  doi: 10.1007/s00376-019-8205-z
    [6] Xuan LI, Jie FENG, Ruiqiang DING, Jianping LI, 2021: Application of Backward Nonlinear Local Lyapunov Exponent Method to Assessing the Relative Impacts of Initial Condition and Model Errors on Local Backward Predictability, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1486-1496.  doi: 10.1007/s00376-021-0434-2
    [7] NIU Tao, WANG Jizhi, YANG Yuanqin, LIU Hongli, CHEN Miao, LIU Jiyan, 2013: Development of a Meteorological and Hydrological Coupling Index for Droughts and Floods along the Yangtze River Valley of China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1653-1662.  doi: 10.1007/s00376-013-2303-0
    [8] Weihua CHEN, Weiwen WANG, Shiguo JIA, Jingying MAO, Fenghua YAN, Lianming ZHENG, Yongkang WU, Xingteng ZHANG, Yutong DONG, Lingbin KONG, Buqing ZHONG, Ming CHANG, Min SHAO, Xuemei WANG, 2022: A New Index Developed for Fast Diagnosis of Meteorological Roles in Ground-Level Ozone Variations, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 403-414.  doi: 10.1007/s00376-021-1257-x
    [9] Pratima GUPTA, Shalendra Pratap SINGH, Ashok JANGID, Ranjit KUMAR, 2017: Characterization of Black Carbon in the Ambient Air of Agra, India: Seasonal Variation and Meteorological Influence, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1082-1094.  doi: 10.1007/s00376-017-6234-z
    [10] Hao LUO, Yong HAN, Chunsong LU, Jun YANG, Yonghua WU, 2019: Characteristics of Surface Solar Radiation under Different Air Pollution Conditions over Nanjing, China: Observation and Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1047-1059.  doi: 10.1007/s00376-019-9010-4
    [11] Jianguo Niu, Hiroaki Kuze, Nobuo Takeuchi, 2000: Studying Air Pollution with Kitt Peak Solar Flux Atlas-Analysis Method and Results of Observation, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 363-374.  doi: 10.1007/s00376-000-0029-2
    [12] ZHOU Li, XU Xiangde, DING Guoan, ZHOU Mingyu, CHENG Xinghong, 2005: Diurnal Variations of Air Pollution and Atmospheric Boundary Layer Structure in Beijing During Winter 2000/2001, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 126-132.  doi: 10.1007/BF02930876
    [13] Tong ZHU, Mingjin TANG, Meng GAO, Xinhui BI, Junji CAO, Huizheng CHE, Jianmin CHEN, Aijun DING, Pingqing FU, Jian GAO, Yang GAO, Maofa GE, Xinlei GE, Zhiwei HAN, Hong HE, Ru-Jin HUANG, Xin HUANG, Hong LIAO, Cheng LIU, Huan LIU, Jianguo LIU, Shaw Chen LIU, Keding LU, Qingxin MA, Wei NIE, Min SHAO, Yu SONG, Yele SUN, Xiao TANG, Tao WANG, Tijian WANG, Weigang WANG, Xuemei WANG, Zifa WANG, Yan YIN, Qiang ZHANG, Weijun ZHANG, Yanlin ZHANG, Yunhong ZHANG, Yu ZHAO, Mei ZHENG, Bin ZHU, Jiang ZHU, 2023: Recent Progress in Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the “Air Pollution Complex”, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1339-1361.  doi: 10.1007/s00376-023-2379-0
    [14] WANG Tijian, K. S. LAM, C. W. TSANG, S. C. KOT, 2004: On the Variability and Correlation of Surface Ozone and Carbon Monoxide Observed in Hong Kong Using Trajectory and Regression Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 141-152.  doi: 10.1007/BF02915688
    [15] Xuan LI, Ruiqiang DING, Jianping LI, 2020: Quantitative Comparison of Predictabilities of Warm and Cold Events Using the Backward Nonlinear Local Lyapunov Exponent Method, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 951-958.  doi: 10.1007/s00376-020-2100-5
    [16] Yufan DAI, Qingqing LI, Xinhang LIU, Lijuan WANG, 2023: A Lagrangian Trajectory Analysis of Azimuthally Asymmetric Equivalent Potential Temperature in the Outer Core of Sheared Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1689-1706.  doi: 10.1007/s00376-023-2245-0
    [17] Ho Nam CHEUNG, ZHOU Wen, Hing Yim MOK, Man Chi WU, Yaping SHAO, 2013: Revisiting the Climatology of Atmospheric Blocking in the Northern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 397-410.  doi: 10.1007/s00376-012-2006-y
    [18] K.-M. Lau, Song Yang, 1997: Climatology and Interannual Variability of the Southeast Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 141-162.  doi: 10.1007/s00376-997-0016-y
    [19] TANG Yanbing, GAN Jingjing, ZHAO Lu, GAO Kun, 2006: On the Climatology of Persistent Heavy Rainfall Events in China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 678-692.  doi: 10.1007/s00376-006-0678-x
    [20] Julia CURIO, Yongren CHEN, Reinhard SCHIEMANN, Andrew G. TURNER, Kai Chi WONG, Kevin HODGES, Yueqing LI, 2018: Comparison of a Manual and an Automated Tracking Method for Tibetan Plateau Vortices, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 965-980.  doi: 10.1007/s00376-018-7278-4

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2012
Manuscript revised: 10 March 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Using Synoptic Classification and Trajectory Analysis to Assess Air Quality during the Winter Heating Period in Urumqi, China

  • 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Xinjiang Weather Office, Urumqi 830002

Abstract: Synoptic patterns identified by an automated procedure employing principal- component analysis and a two-stage cluster analysis, and backward trajectory analysis clustered by the HYSPLIT4.9 model were used to examine air quality patterns over Urumqi, China, one of the most heavily polluted cities in the world. Six synoptic patterns representing different atmospheric circulation patterns and air-mass characteristics were classified during the winter heating periods from 2001 to 2008, and seven trajectory clusters representing different paths of air masses arriving at Urumqi were calculated during the winter heating periods from 2005 to 2008. Then air quality was evaluated using these two approaches, and significant variations were found across both synoptic patterns and trajectory clusters. The heaviest air-pollution episodes occurred when Urumqi was either in an extremely cold, strong anticyclone or at the front of a migrating cyclone. Both conditions were characterized by with light winds, cold, wet surface air, and relatively dry upper air. Urumqi was predominately influenced by air masses from the southwest and from local areas. Air pollution index (API) levels were highest for air masses originating from the southwest with a longer path or for the local area, because of transport from semi-desert/desert regions by strong winds and because of local heavy pollution emissions, respectively. The interactions between these two analytical approaches showed that poor diffusion conditions, together with local circulation, enhanced air pollution, besides, regional air-mass transport caused by strong winds contributed to serious air quality under relatively good diffusion conditions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return