Advanced Search
Article Contents

Enhancements of Major Aerosol Components Due to Additional HONO Sources in the North China Plain and Implications for Visibility and Haze


doi: 10.1007/s00376-012-2016-9

  • The Weather Research and Forecasting/Chemistry model (WRF-Chem) was updated by including photoexcited nitrogen dioxide (NO2) molecules, heterogeneous reactions on aerosol surfaces, and direct emissions of nitrous acid (HONO) in the Carbon-Bond Mechanism Z (CBM-Z). Five simulations were conducted to assess the effects of each new component and the three additional HONO sources on concentrations of major chemical components. We calculated percentage changes of major aerosol components and concentration ratios of gas NOy (NOyg) to NOy and particulate nitrates (NO3-) to NOy due to the three additional HONO sources in the North China Plain in August of 2007. Our results indicate that when the three additional HONO sources are included, WRF-Chem can reasonably reproduce the HONO observations. Heterogeneous reactions on aerosol surfaces are a key contributor to concentrations of HONO, nitrates (NO3-), ammonium (NH4+), and PM2.5 (concentration of particulate matter of ≤2.5 μm in the ambient air) across the North China Plain. The three additional HONO sources produced a ~5%–20% increase in monthly mean daytime concentration ratios of NO3-/NOy, a ~15%--52% increase in maximum hourly mean concentration ratios of NO3-/NOy, and a ~10%–50% increase in monthly mean concentrations of NO3- and NH4+ across large areas of the North China Plain. For the Bohai Bay, the largest hourly increases of NO3- exceeded 90%, of NH4+ exceeded 80%, and of PM2.5 exceeded 40%, due to the three additional HONO sources. This implies that the three additional HONO sources can aggravate regional air pollution, further impair visibility, and enhance the incidence of haze in some industrialized regions with high emissions of NOx and particulate matter under favorable meteorological conditions.
  • [1] LI Ying, AN Junling, Ismail GULTEPE, 2014: Effects of Additional HONO Sources on Visibility over the North China Plain, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1221-1232.  doi: 10.1007/s00376-014-4019-1
    [2] LI Dan, BIAN Jianchun, 2015: Observation of a Summer Tropopause Fold by Ozonesonde at Changchun, China: Comparison with Reanalysis and Model Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1354-1364.  doi: 10.1007/s00376-015-5022-x
    [3] Yawei QU, Tijian WANG, Yanfeng CAI, Shekou WANG, Pulong CHEN, Shu LI, Mengmeng LI, Cheng YUAN, Jing WANG, Shaocai XU, 2018: Influence of Atmospheric Particulate Matter on Ozone in Nanjing, China: Observational Study and Mechanistic Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1381-1395.  doi: 10.1007/s00376-018-8027-4
    [4] Meng CUI, Xingqin AN, Li XING, Guohui LI, Guiqian TANG, Jianjun HE, Xin LONG, Shuman ZHAO, 2021: Simulated Sensitivity of Ozone Generation to Precursors in Beijing during a High O3 Episode, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1223-1237.  doi: 10.1007/s00376-021-0270-4
    [5] WANG Feng, AN Junling, LI Ying, TANG Yujia, LIN Jian, QU Yu, CHEN Yong, ZHANG Bing, ZHAI Jing, 2014: Impacts of Uncertainty in AVOC Emissions on the Summer ROx Budget and Ozone Production Rate in the Three Most Rapidly-Developing Economic Growth Regions of China, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1331-1342.  doi: 10.1007/s00376-014-3251-z
    [6] YAN Renchang, BIAN Jianchun, 2015: Tracing the Boundary Layer Sources of Carbon Monoxide in the Asian Summer Monsoon Anticyclone Using WRF-Chem, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 943-951.  doi: 10.1007/s00376-014-4130-3
    [7] Jun WANG, Jinming FENG, Qizhong WU, Zhongwei YAN, 2016: Impact of Anthropogenic Aerosols on Summer Precipitation in the Beijing-Tianjin-Hebei Urban Agglomeration in China: Regional Climate Modeling Using WRF-Chem, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 753-766.  doi: 10.1007/s00376-015-5103-x
    [8] AN Junling, CHENG Xinjin, QU Yu, CHEN Yong, 2007: Influence of Vertical Eddy Diffusivity Parameterization on Daily and Monthly Mean Concentrations of O3 and NOy, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 573-580.  doi: 10.1007/s00376-007-0573-0
    [9] WU Tongwen, LIU Ping, WANG Zaizhi, LIU Yimin, YU Rucong, WU Guoxiong, 2003: The Performance of Atmospheric Component Model R42L9 of GOALS/LASG, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 726-742.  doi: 10.1007/BF02915398
    [10] Zeng Xinmin, Zhao Ming, Su Bingkai, Wang Hanjie, 1999: Study on a Boundary-layer Numerical Model with Inclusion of Heterogeneous Multi-layer Vegetation, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 431-442.  doi: 10.1007/s00376-999-0021-4
    [11] Silvia Alessio, Arnaldo Longhetto, Luo Meixia, 1999: The Space and Time Features of Global SST Anomalies Studied by Complex Principal Component Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 1-23.  doi: 10.1007/s00376-999-0001-8
    [12] ZHONG Zhong, ZHAO Ming, SU Bingkai, TANG Jianping, 2003: On the Determination and Characteristics of Effective Roughness Length for Heterogeneous Terrain, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 71-76.  doi: 10.1007/BF03342051
    [13] DENG Huiping, SUN Shufen, 2010: Extension of TOPMODEL Applications to the Heterogeneous Land Surface, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 164-176.  doi: 10.1007/s00376-009-8146-z
    [14] ZHOU Suoquan, CHEN Jingming, GONG Peng, XUE Genyuan, 2006: Effects of Heterogeneous Vegetation on the Surface Hydrological Cycle, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 391-404.  doi: 10.1007/s00376-006-0391-9
    [15] DAI Tie, SHI Guangyu, Teruyuki NAKAJIMA, 2015: Analysis and Evaluation of the Global Aerosol Optical Properties Simulated by an Online Aerosol-coupled Non-hydrostatic Icosahedral Atmospheric Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 743-758.  doi: 10.1007/s00376-014-4098-z
    [16] MIAO Yucong, LIU Shuhua, CHEN Bicheng, ZHANG Bihui, WANG Shu, LI Shuyan, 2013: Simulating Urban Flow and Dispersion in Beijing by Coupling a CFD Model with the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1663-1678.  doi: 10.1007/s00376-013-2234-9
    [17] Jie ZHANG, Tongwen WU, Fang ZHANG, Kalli FURTADO, Xiaoge XIN, Xueli SHI, Jianglong LI, Min CHU, Li ZHANG, Qianxia LIU, Jinghui Yan, Min WEI, Qiang MA, 2021: BCC-ESM1 Model Datasets for the CMIP6 Aerosol Chemistry Model Intercomparison Project (AerChemMIP), ADVANCES IN ATMOSPHERIC SCIENCES, 38, 317-328.  doi: 10.1007/s00376-020-0151-2
    [18] YUE Xu, WANG Huijun, LIAO Hong, FAN Ke, 2010: Direct Climatic Effect of Dust Aerosol in the NCAR Community Atmosphere Model Version 3 (CAM3), ADVANCES IN ATMOSPHERIC SCIENCES, 27, 230-242.  doi: 10.1007/s00376-009-8170-z
    [19] HAN Xiao, ZHANG Meigen, ZHU Lingyun, and XU Liren, 2013: Model analysis of influences of aerosol mixing state upon its optical properties in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1201-1212.  doi: 10.1007/s00376-012-2150-4
    [20] Efang ZHONG, Qian LI, Shufen SUN, Wen CHEN, Shangfeng CHEN, Debashis NATH, 2017: Improvement of a Snow Albedo Parameterization in the Snow-Atmosphere-Soil Transfer Model: Evaluation of Impacts of Aerosol on Seasonal Snow Cover, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1333-1345.  doi: 10.1007/s00376-017-7019-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2013
Manuscript revised: 10 January 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Enhancements of Major Aerosol Components Due to Additional HONO Sources in the North China Plain and Implications for Visibility and Haze

  • 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, University of Chinese Academy of Sciences, Beijing 100049;State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, University of Chinese Academy of Sciences, Beijing 100049;State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, University of Chinese Academy of Sciences, Beijing 100049

Abstract: The Weather Research and Forecasting/Chemistry model (WRF-Chem) was updated by including photoexcited nitrogen dioxide (NO2) molecules, heterogeneous reactions on aerosol surfaces, and direct emissions of nitrous acid (HONO) in the Carbon-Bond Mechanism Z (CBM-Z). Five simulations were conducted to assess the effects of each new component and the three additional HONO sources on concentrations of major chemical components. We calculated percentage changes of major aerosol components and concentration ratios of gas NOy (NOyg) to NOy and particulate nitrates (NO3-) to NOy due to the three additional HONO sources in the North China Plain in August of 2007. Our results indicate that when the three additional HONO sources are included, WRF-Chem can reasonably reproduce the HONO observations. Heterogeneous reactions on aerosol surfaces are a key contributor to concentrations of HONO, nitrates (NO3-), ammonium (NH4+), and PM2.5 (concentration of particulate matter of ≤2.5 μm in the ambient air) across the North China Plain. The three additional HONO sources produced a ~5%–20% increase in monthly mean daytime concentration ratios of NO3-/NOy, a ~15%--52% increase in maximum hourly mean concentration ratios of NO3-/NOy, and a ~10%–50% increase in monthly mean concentrations of NO3- and NH4+ across large areas of the North China Plain. For the Bohai Bay, the largest hourly increases of NO3- exceeded 90%, of NH4+ exceeded 80%, and of PM2.5 exceeded 40%, due to the three additional HONO sources. This implies that the three additional HONO sources can aggravate regional air pollution, further impair visibility, and enhance the incidence of haze in some industrialized regions with high emissions of NOx and particulate matter under favorable meteorological conditions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return