Advanced Search
Article Contents

CAS-FGOALS datasets for the two interglacial epochs of the Holocene and the Last Interglacial in the Paleoclimate Modelling Intercomparison Project (PMIP4)

Fund Project:

This study was supported by the National Key RD Program for Developing Basic Sciences (2016YFC1401401 and 2016YFC1401601) and the National Natural Science Foundation of China (Grants No. 41576026, 41576025, 41776030, 41931183, 41976026 and 41376002).

  • Two versions of the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System model (CAS-FGOALS), version f3-L and g3, are used to simulate the two interglacial epochs of the mid-Holocene and the Last Interglacial in the Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4), which aims to study the impact of changes in orbital parameters on the Earth’s climate. Following the PMIP4 experimental protocols, four simulations for the mid-Holocene and two simulations for the Last Interglacial have been completed, and all the data, including monthly and daily outputs for the atmospheric, oceanic, land and sea ice, have been released on the Earth System Grid Federation (ESGF). These datasets contribute to the PMIP4 and Coupled Model Intercomparison Project phase 6 (CMIP6) by providing the variables necessary for the two interglacial periods. In this paper, the basic information of the CAS-FGOALS models and the protocols for the two interglacials are briefly described, and the datasets are validated by the proxy records. Results suggest that the CAS-FGOALS models capture the large-scale changes in the climate system in response to changes in solar insolation during the interglacial epochs, including warming in mid- to high latitudes, changes in the hydrological cycle, the seasonal variation in the extent of sea ice and the damping of interannual variabilities in the tropical Pacific. Meanwhile, disagreements within and between the models and the proxy data are also presented. These datasets will help the modelling and the proxy data communities with better understandings of the model performance and biases in paleoclimate simulations.
  • [1] Bian HE, Qing BAO*, Xiaocong WANG, Linjiong ZHOU, Xiaofei WU, Yimin LIU, Guoxiong WU, Kangjun CHEN, Sicheng HE, Wenting HU, Jiandong LI, Jinxiao LI, Guokui NIAN, Lei WANG, Jing YANG, Minghua ZHANG, Xiaoqi ZHANG, 2019: CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, , 771-778.  doi: 10.1007/s00376-019-9027-8
    [2] ZHENG Weipeng, and YU Yongqiang, 2013: Paleoclimate Simulations of the Mid-Holocene and Last Glacial Maximum by FGOALS, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 684-698.  doi: 10.1007/s00376-012-2177-6
    [3] Pengfei LIN, Zhipeng YU, Hailong LIU, Yongqiang YU, Yiwen LI, Jirong JIANG, Wei XUE, Kangjun CHEN, Qian YANG, Bowen ZHAO, Jilin WEI, Mengrong DING, Zhikuo SUN, Yaqi WANG, Yao MENG, Weipeng ZHENG, Jinfeng MA, 2020: LICOM Model Datasets for the CMIP6 Ocean Model Intercomparison Project, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 239-249.  doi: 10.1007/s00376-019-9208-5
    [4] Pengfei LIN, Zhipeng YU, Hailong LIU, Yongqiang YU, Yiwen LI, Jirong JIANG, Wei XUE, Kangjun CHEN, Qian YANG, Bowen ZHAO, Jilin WEI, Mengrong DING, Zhikuo SUN, Yaqi WANG, Yao MENG, Weipeng ZHENG, Jinfeng MA, 2020: Erratum to: LICOM Model Datasets for the CMIP6 Ocean Model Intercomparison Project, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 662-662.  doi: 10.1007/s00376-020-2005-3
    [5] Yuyang GUO, Yongqiang YU, Pengfei LIN, Hailong LIU, Bian HE, Qing BAO, Shuwen ZHAO, Xiaowei WANG, 2020: Overview of the CMIP6 Historical Experiment Datasets with the Climate System Model CAS FGOALS-f3-L, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-020-2004-4
    [6] LIU Yuzhi, SHI Guangyu, XIE Yongkun, 2013: Impact of Dust Aerosol on Glacial-Interglacial Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1725-1731.  doi: 10.1007/s00376-013-2289-7
    [7] Bian HE, Yimin LIU, Guoxiong WU, Qing BAO, Tianjun ZHOU, Xiaofei WU, Lei WANG, Jiandong LI, Xiaocong WANG, Jinxiao LI, Wenting HU, Xiaoqi ZHANG, Chen SHENG, Yiqiong TANG, 2020: CAS FGOALS-f3-L Model Datasets for CMIP6 GMMIP Tier-1 and Tier-3 Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 18-28.  doi: 10.1007/s00376-019-9085-y
    [8] JIANG Dabang, ZHANG Zhongshi, 2006: Paleoclimate Modelling at the Institute of Atmospheric Physics, Chinese Academy of Sciences, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 1040-1049.  doi: 10.1007/s00376-006-1040-z
    [9] Ning ZENG, 2003: Glacial-Interglacial Atmospheric CO2 Change--The Glacial Burial Hypothesis, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 677-693.  doi: 10.1007/BF02915395
    [10] Hui LIU, Bo HU, Yuesi WANG, Guangren LIU, Liqin TANG, Dongsheng JI, Yongfei BAI, Weikai BAO, Xin CHEN, Yunming CHEN, Weixin DING, Xiaozeng HAN, Fei HE, Hui HUANG, Zhenying HUANG, Xinrong LI, Yan LI, Wenzhao LIU, Luxiang LIN, Zhu OUYANG, Boqiang QIN, Weijun SHEN, Yanjun SHEN, Hongxin SU, Changchun SONG, Bo SUN, Song SUN, Anzhi WANG, Genxu WANG, Huimin WANG, Silong WANG, Youshao WANG, Wenxue WEI, Ping XIE, Zongqiang XIE, Xiaoyuan YAN, Fanjiang ZENG, Fawei ZHANG, Yangjian ZHANG, Yiping ZHANG, Chengyi ZHAO, Wenzhi ZHAO, Xueyong ZHAO, Guoyi ZHOU, Bo ZHU, 2017: Two Ultraviolet Radiation Datasets that Cover China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 805-815.  doi: 10.1007/s00376-017-6293-1
    [11] Seong-Joong KIM, LÜ Junmei, and Baek-Min KIM, 2014: The Southern Annular Mode (SAM) in PMIP2 Simulations of the Last Glacial Maximum, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 863-878.  doi: 10.1007/s00376-013-3179-8
    [12] Kaiqing YANG, Dabang JIANG, 2017: Interannual Climate Variability Change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 Last Millennium Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 497-508.  doi: 10.1007/s00376-016-6075-1
    [13] Sun-Hee SHIN, Ok-Yeon KIM, Dongmin KIM, Myong-In LEE, 2017: Cloud Radiative Effects and Changes Simulated by the Coupled Model Intercomparison Project Phase 5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 859-876.  doi: 10.1007/s00376-017-6089-3
    [14] Liwei ZOU, Tian-Jun ZHOU, Jianping Tang, Hailong LIU, 2020: Introduction to the regional coupled model WRF4-LICOM: Performance and model intercomparison over the western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-020-9268-6
    [15] QIAN Weihong, LIN Xiang, 2009: An Integrated Analysis of Dry-Wet Variability in Western China for the Last 4--5 Centuries, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 951-961.  doi: 10.1007/s00376-009-8070-2
    [16] ZHANG Jie, Laurent LI, ZHOU Tianjun, and XIN Xiaoge, 2013: Variation of Surface Temperature during the Last Millennium in a Simulation with the FGOALS-gl Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 699-712.  doi: 10.1007/s00376-013-2178-0
    [17] XIE Fei, LI Jianping, TIAN Wenshou, ZHANG Jiankai, SHU Jianchuan, 2014: The Impacts of Two Types of El Nio on Global Ozone Variations in the Last Three Decades, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1113-1126.  doi: 10.1007/s00376-013-3166-0
    [18] LIU Wenhuo, GOU Xiaohua, YANG Meixue, ZHANG Yong, FANG Keyan, YANG Tao, JIN Liya, 2009: Drought Reconstruction in the Qilian Mountains over the Last Two Centuries and Its Implications for Large-Scale Moisture Patterns, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 621-629.  doi: 10.1007/s00376-009-9028-0
    [19] JIANG Dabang, YU Ge, ZHAO Ping, CHEN Xing, LIU Jian, LIU Xiaodong, WANG Shaowu, ZHANG Zhongshi, YU Yongqiang, LI Yuefeng, JIN Liya, XU Ying, JU Lixia, ZHOU Tianjun, YAN Xiaodong, 2015: Paleoclimate Modeling in China: A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 250-275.  doi: 10.1007/s00376-014-0002-0
    [20] MA Shuangmei, ZHOU Tianjun, 2015: Precipitation Changes in Wet and Dry Seasons over the 20th Century Simulated by Two Versions of the FGOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 839-854.  doi: 10.1007/s00376-014-4136-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 31 December 2019
Manuscript revised: 27 April 2020
Manuscript accepted: 20 May 2020
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

CAS-FGOALS datasets for the two interglacial epochs of the Holocene and the Last Interglacial in the Paleoclimate Modelling Intercomparison Project (PMIP4)

    Corresponding author: Weipeng ZHENG; 
  • 1. Institute of Atmospheric Physics Chinese Academy of Sciences
  • 2. Hua Yan Li 40 Chao Yang District
  • 3. Institute of Atmospheric Physics Chinese Academy of Sciences LASG

Abstract: Two versions of the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System model (CAS-FGOALS), version f3-L and g3, are used to simulate the two interglacial epochs of the mid-Holocene and the Last Interglacial in the Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4), which aims to study the impact of changes in orbital parameters on the Earth’s climate. Following the PMIP4 experimental protocols, four simulations for the mid-Holocene and two simulations for the Last Interglacial have been completed, and all the data, including monthly and daily outputs for the atmospheric, oceanic, land and sea ice, have been released on the Earth System Grid Federation (ESGF). These datasets contribute to the PMIP4 and Coupled Model Intercomparison Project phase 6 (CMIP6) by providing the variables necessary for the two interglacial periods. In this paper, the basic information of the CAS-FGOALS models and the protocols for the two interglacials are briefly described, and the datasets are validated by the proxy records. Results suggest that the CAS-FGOALS models capture the large-scale changes in the climate system in response to changes in solar insolation during the interglacial epochs, including warming in mid- to high latitudes, changes in the hydrological cycle, the seasonal variation in the extent of sea ice and the damping of interannual variabilities in the tropical Pacific. Meanwhile, disagreements within and between the models and the proxy data are also presented. These datasets will help the modelling and the proxy data communities with better understandings of the model performance and biases in paleoclimate simulations.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return