Advanced Search
Article Contents

Macro- and micro-physical characteristics of different parts of mixed convective-stratiform clouds and differences in their responses to seeding


doi:  10.1007/s00376-022-2003-8

  • This study investigates the cloud macro- and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds occurred in Shandong province on 21 May 2018, based on the observations from the aircraft, the Suomi National Polar-Orbiting Partnership (NPP) satellite, and the high-resolution Himawari-8 (H8) satellite. The aircraft observations show that there are deeper convection and significantly enhanced radar echoes with higher tops in response to seeding in the convective region. This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat, resulting in strengthened updrafts, enhanced radar echoes, higher cloud tops, and then more and larger precipitation particles. In contrast, in the stratiform cloud region, after the AgI seeding, the radar echoes become significantly weaker at heights close to the seeding layer, with the echo tops lowered by 1.4–1.7 km. In addition, a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km, and response features such as icing seeding tracks appear. These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part. The NPP and H8 satellites also show that convective activities are stronger in the convective region after seeding; while in the stratiform region, a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding, which moves along the wind direction as width increases.
  • [1] Li Jun, Wang Luyi, Zhou Fengxian, 1993: Convective and Stratiform Cloud Rainfall Estimation from Geostationary Satellite Data, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 475-480.  doi: 10.1007/BF02656972
    [2] YU Xing, DAI Jin, LEI Hengchi, FAN Peng, 2005: Comparison Between Computer Simulation of Transport and Diffusion of Cloud Seeding Material Within Stratiform Cloud and the NOAA-14 Satellite Cloud Track, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 133-141.  doi: 10.1007/BF02930877
    [3] QIU Yujun, Thomas CHOULARTON, Jonathan CROSIER, Zixia LIU, 2015: Comparison of Cloud Properties between CloudSat Retrievals and Airplane Measurements in Mixed-Phase Cloud Layers of Weak Convective and Stratus Clouds, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1628-1638.  doi: 10.1007/s00376-015-4287-4
    [4] ZHONG Lingzhi, LIU Liping, DENG Min, ZHOU Xiuji, 2012: Retrieving Microphysical Properties and Air Motion of Cirrus Clouds Based on the Doppler Moments Method Using Cloud Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 611-622.  doi: 10.1007/s00376-011-0112-x
    [5] Jiefan YANG, Hengchi LEI, Tuanjie HOU, 2017: Observational Evidence of High Ice Concentration in a Shallow Convective Cloud Embedded in Stratiform Cloud over North China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 509-520.  doi: 10.1007/s00376-016-6079-x
    [6] Su-Bin OH, Yeon-Hee KIM, Ki-Hoon KIM, Chun-Ho CHO, Eunha LIM, 2016: Verification and Correction of Cloud Base and Top Height Retrievals from Ka-band Cloud Radar in Boseong, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 73-84.  doi: 10.1007/s00376-015-5058-y
    [7] Juan HUO, Yongheng BI, Daren Lü, Shu DUAN, 2019: Cloud Classification and Distribution of Cloud Types in Beijing Using Ka-Band Radar Data, ADVANCES IN ATMOSPHERIC SCIENCES, , 793-803.  doi: 10.1007/s00376-019-8272-1
    [8] Liping LIU, Jiafeng ZHENG, Jingya WU, 2017: A Ka-band Solid-state Transmitter Cloud Radar and Data Merging Algorithm for Its Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 545-558.  doi: 10.1007/s00376-016-6044-8
    [9] Tuanjie HOU, Hengchi LEI, Youjiang HE, Jiefan YANG, Zhen ZHAO, Zhaoxia HU, 2021: Aircraft Measurements of the Microphysical Properties of Stratiform Clouds with Embedded Convection, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 966-982.  doi: 10.1007/s00376-021-0287-8
    [10] Zhang Minghua, Yu Rucong, Yu Yongqiang, 2001: Comparing Cloud Radiative Properties between the Eastern China and the Indian Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1090-1102.  doi: 10.1007/s00376-001-0025-1
    [11] Yuanyuan ZUO, Zhiqun HU, Shujie YUAN, Jiafeng ZHENG, Xiaoyan YIN, Boyong LI, 2022: Identification of Convective and Stratiform Clouds Based on the Improved DBSCAN Clustering Algorithm, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-021-1223-7
    [12] MIAO Qun, and Bart GEERTS, 2013: Airborne measurements of the impact of ground-based glaciogenic cloud seeding on orographic precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1025-1038.  doi: 10.1007/s00376-012-2128-2
    [13] ZHU Jiangshan, KONG Fanyou, LEI Hengchi, 2013: A Regional Ensemble Forecast System for Stratiform Precipitation Events in the Northern China Region. Part II: Seasonal Evaluation for Summer 2010, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 15-28.  doi: 10.1007/s00376-012-1043-x
    [14] Hong WANG, Wenqing WANG, Jun WANG, Dianli GONG, Dianguo ZHANG, Ling ZHANG, Qiuchen ZHANG, 2021: Rainfall Microphysical Properties of Landfalling Typhoon Yagi (201814) Based on the Observations of Micro Rain Radar and Cloud Radar in Shandong, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 994-1011.  doi: 10.1007/s00376-021-0062-x
    [15] LIU Liping, ZHUANG Wei, ZHANG Pengfei, MU Rong, 2010: Convective Scale Structure and Evolution of a Squall Line Observed by C-Band Dual Doppler Radar in an Arid Region of Northwestern China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1099-1109.  doi: 10.1007/s00376-009-8217-1
    [16] Yongjie HUANG, Yaping WANG, Xiaopeng CUI, 2019: Differences between Convective and Stratiform Precipitation Budgets in a Torrential Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 495-509.  doi: 10.1007/s00376-019-8159-1
    [17] Yafei YAN, Yimin LIU, 2019: Vertical Structures of Convective and Stratiform Clouds in Boreal Summer over the Tibetan Plateau and Its Neighboring Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1089-1102.  doi: 10.1007/s00376-019-8229-4
    [18] Surendra S. Parasnis, Savita B. Morwal, K. G. Vernekar, 1991: Convective Boundary Layer in the Region of the Monsoon Trough-A Case Study, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 505-509.  doi: 10.1007/BF02919273
    [19] Yongguang ZHENG, Yanduo GONG, Jiong CHEN, Fuyou TIAN, 2019: Warm-Season Diurnal Variations of Total, Stratiform, Convective, and Extreme Hourly Precipitation over Central and Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 143-159.  doi: 10.1007/s00376-018-7307-3
    [20] Tuanjie HOU, Hengchi LEI, Zhaoxia HU, Jiefan YANG, Xingyu LI, 2020: Simulations of Microphysics and Precipitation in a Stratiform Cloud Case over Northern China: Comparison of Two Microphysics Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 117-129.  doi: 10.1007/s00376-019-8257-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 13 January 2022
Manuscript revised: 25 April 2022
Manuscript accepted: 11 May 2022
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Macro- and micro-physical characteristics of different parts of mixed convective-stratiform clouds and differences in their responses to seeding

Abstract: This study investigates the cloud macro- and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds occurred in Shandong province on 21 May 2018, based on the observations from the aircraft, the Suomi National Polar-Orbiting Partnership (NPP) satellite, and the high-resolution Himawari-8 (H8) satellite. The aircraft observations show that there are deeper convection and significantly enhanced radar echoes with higher tops in response to seeding in the convective region. This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat, resulting in strengthened updrafts, enhanced radar echoes, higher cloud tops, and then more and larger precipitation particles. In contrast, in the stratiform cloud region, after the AgI seeding, the radar echoes become significantly weaker at heights close to the seeding layer, with the echo tops lowered by 1.4–1.7 km. In addition, a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km, and response features such as icing seeding tracks appear. These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part. The NPP and H8 satellites also show that convective activities are stronger in the convective region after seeding; while in the stratiform region, a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding, which moves along the wind direction as width increases.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return