Hu, S., T.-J. Zhou, B. Wu, and X. L. Chen, 2023: Seasonal prediction of the record-breaking northward shift of the western Pacific subtropical high in July 2021. Adv. Atmos. Sci., 40(3), 410−427, https://doi.org/10.1007/s00376-022-2151-x.
Citation: Hu, S., T.-J. Zhou, B. Wu, and X. L. Chen, 2023: Seasonal prediction of the record-breaking northward shift of the western Pacific subtropical high in July 2021. Adv. Atmos. Sci., 40(3), 410−427, https://doi.org/10.1007/s00376-022-2151-x.

Seasonal Prediction of the Record-Breaking Northward Shift of the Western Pacific Subtropical High in July 2021

  • The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high (WPSH). Although the occurrence of this extreme event could not be captured by seasonal predictions, a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China. However, the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown. Here, the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China, the amplitude of which became the strongest since 1979. The meridional dipole pattern is two nodes of the Pacific–Japan pattern. To investigate the predictability of the WPSH variation, a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted. The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations. Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific. The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña, which is skillfully predicted by the model. The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations, which are not initialized in the simulations. The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0% and 72.0%, respectively.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return