Gautam, S., A. Samantaray, M. Babbar-Sebens, and M. Ramadas, 2024: Characterization and propagation of historical and projected droughts in the Umatilla River Basin, Oregon, USA. Adv. Atmos. Sci., 41(2), 247−262, https://doi.org/10.1007/s00376-023-2302-8.
Citation: Gautam, S., A. Samantaray, M. Babbar-Sebens, and M. Ramadas, 2024: Characterization and propagation of historical and projected droughts in the Umatilla River Basin, Oregon, USA. Adv. Atmos. Sci., 41(2), 247−262, https://doi.org/10.1007/s00376-023-2302-8.

Characterization and Propagation of Historical and Projected Droughts in the Umatilla River Basin, Oregon, USA

  • Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and drought propagation in the Umatilla River Basin in northeastern Oregon for mid-century (2030–2059) and late-century (2070–2099) climate scenarios. Drought characteristics for projected climates were determined using downscaled CMIP5 climate datasets from ten climate models and Soil and Water Assessment Tool to simulate effects on hydrologic processes. Short-term (three months) drought characteristics (frequency, duration, and severity) were analyzed using four drought indices, including the Standardized Precipitation Index (SPI-3), Standardized Precipitation-Evapotranspiration Index (SPEI-3), Standardized Streamflow Index (SSI-3), and the Standardized Soil Moisture Index (SSMI-3). Results indicate that short-term meteorological droughts are projected to become more prevalent, with up to a 20% increase in the frequency of SPI-3 drought events. Short-term hydrological droughts are projected to become more frequent (average increase of 11% in frequency of SSI-3 drought events), more severe, and longer in duration (average increase of 8% for short-term droughts). Similarly, short-term agricultural droughts are projected to become more frequent (average increase of 28% in frequency of SSMI-3 drought events) but slightly shorter in duration (average decrease of 4%) in the future. Historically, drought propagation time from meteorological to hydrological drought is shorter than from meteorological to agricultural drought in most sub-basins. For the projected climate scenarios, the decrease in drought propagation time will likely stress the timing and capacity of water supply in the basin for irrigation and other uses.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return