Advanced Search
Article Contents

Representation of the stratospheric circulation in CRA-40 reanalysis: the Arctic polar vortex and the quasi-biennial oscillation

Fund Project:

the National Natural Science Foundation of China (Grant Nos. 41975048, 42030605, and 42175069)


doi:  10.1007/s00376-023-3127-1

  • The representation of the Arctic stratospheric circulation and the quasi-biennial oscillation (QBO) during the period 1981–2019 in a 40-yr China’s global reanalysis dataset (CRA-40) is evaluated by comparisons with the two widely used reanalysis datasets, ERA-5 and MERRA-2. CRA-40 has a comparable performance with ERA-5 and MERRA-2 in characterizing the winter and spring circulation in the lower and middle Arctic stratosphere. Specifically, differences in climatological polar-mean temperature and polar night jet among the three reanalyses are within ±0.5 K and ±0.5 m s–1, respectively. The onset dates of the stratospheric sudden warming and stratospheric final warming events at 10 hPa in CRA-40, together with the dynamics and circulation anomalies during the onset process of warming events, are nearly identical to the other two reanalyses with slight differences. By contrast, CRA-40 has deteriorated performance in describing the QBO below 10 hPa compared to the other two reanalysis products, as manifested by the larger easterly biases of the QBO index, the remarkably weaker amplitude of the QBO, and the weaker wavelet power of the QBO period. Such pronounced biases are mainly concentrated in the period 1981–1998 and largely reduced by at least 39% in 1999–2019. Thus, particular caution is needed in studying the QBO based on CRA-40. Compared to the lower and middle stratosphere, all the three reanalyses have greater disagreement in the upper stratosphere in both the polar region and the tropics.
  • [1] Jingpeng ZHANG, Tianbao ZHAO, Zhi LI, Chunxiang LI, Zhen LI, Kairan YING, Chunxiang SHI, Lipeng JIANG, Wenyu ZHANG, 2021: Evaluation of Surface Relative Humidity in China from the CRA-40 and Current Reanalyses, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1958-1976.  doi: 10.1007/s00376-021-0333-6
    [2] CHEN Yuejuan, SHI Chunhua, ZHENG Bin, 2005: HCl Quasi-Biennial Oscillation in the Stratosphere and a Comparison with Ozone QBO, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 751-758.  doi: 10.1007/BF02918718
    [3] Huang Ronghui, Wang Lianying, 1990: Relationship between the Interannual Variations of Total Ozone in the Northern Hemisphere and the QBO of Basic Flow in the Tropical Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 47-56.  doi: 10.1007/BF02919167
    [4] ZHAO Tianbao, FU Congbin, 2006: Comparison of Products from ERA-40, NCEP-2, and CRU with Station Data for Summer Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 593-604.  doi: 10.1007/s00376-006-0593-1
    [5] Zou Han, Ji Chongping, Zhou Libo, 2000: QBO Signal in Total Ozone over Tibet, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 562-568.  doi: 10.1007/s00376-000-0019-4
    [6] LI Xiaofeng, LI Jianping, Xiangdong ZHANG, 2013: A Two-way Stratosphere-Troposphere Coupling of Submonthly Zonal-Mean Circulations in the Arctic, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1771-1785.  doi: 10.1007/s00376-013-2210-4
    [7] Shuangyan YANG, Tim LI, Jinggao HU, Xi SHEN, 2017: Decadal Variation of the Impact of La Niña on the Winter Arctic Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 679-684.  doi: 10.1007/s00376-016-6184-x
    [8] Imoleayo Ezekiel GBODE, Toju Esther BABALOLA, Gulilat Tefera DIRO, Joseph Daniel INTSIFUL, 2023: Assessment of ERA5 and ERA-Interim in Reproducing Mean and Extreme Climates over West Africa, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 570-586.  doi: 10.1007/s00376-022-2161-8
    [9] ZHU Yali, 2009: The Antarctic Oscillation-East Asian Summer Monsoon Connections in NCEP-1 and ERA-40, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 707-716.  doi: 10.1007/s00376-009-8196-2
    [10] Hengyi WENG, 2003: Impact of the 11-yr Solar Activity on the QBO in the Climate System, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 303-309.  doi: 10.1007/s00376-003-0017-4
    [11] Zhang Daizhou, Qin Yu, 1995: QBO-like Oscillations Induced by Local Thermal Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 245-254.  doi: 10.1007/BF02656837
    [12] Zhang Qin, Zhu Yufeng, Ni Yunqi, 1995: QBO Features of Tropical Pacific wind Stress Field with the Relation to El Nino, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 87-94.  doi: 10.1007/BF02661290
    [13] ZHAO Tianbao, FU Congbin, 2009: Intercomparison of the Summertime Subtropical High from the ERA-40 and NCEP/NCAR Reanalysis over East Eurasia and the western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 119-131.  doi: 10.1007/s00376-009-0119-8
    [14] MA Yan, CHEN Shang, 2007: Validation of the Polar MM5 for Use in the Simulation of the Arctic River Basins, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 863-874.  doi: 10.1007/s00376-007-0863-6
    [15] CHEN Wen, WEI Ke, 2009: Interannual Variability of the Winter Stratospheric Polar Vortex in the Northern Hemisphere and their Relations to QBO and ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 855-863.  doi: 10.1007/s00376-009-8168-6
    [16] Zhang Ren, Yu Zhihao, 2000: Low-Frequency CISK-Rossby Wave and Stratospheric QBO in the Tropical Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 311-321.  doi: 10.1007/s00376-000-0012-y
    [17] Michael KELLEHER, James SCREEN, 2018: Atmospheric Precursors of and Response to Anomalous Arctic Sea Ice in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 27-37.  doi: 10.1007/s00376-017-7039-9
    [18] ZHOU Libo, ZOU Han, GAO Yongqi, 2006: Middle-High Latitude N2O Distributions Related to the Arctic Vortex Breakup, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 215-223.  doi: 10.1007/s00376-006-0215-y
    [19] Dongxu YANG, Janne HAKKARAINEN, Yi LIU, Iolanda IALONGO, Zhaonan CAI, Johanna TAMMINEN, 2023: Detection of Anthropogenic CO2 Emission Signatures with TanSat CO2 and with Copernicus Sentinel-5 Precursor (S5P) NO2 Measurements: First Results, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1-5.  doi: 10.1007/s00376-022-2237-5
    [20] Zheng Yi, 2000: Study on Horizontal Relative Diffusion in the Troposphere and Lower Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 93-102.  doi: 10.1007/s00376-000-0046-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 19 June 2023
Manuscript revised: 23 September 2023
Manuscript accepted: 13 October 2023
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Representation of the stratospheric circulation in CRA-40 reanalysis: the Arctic polar vortex and the quasi-biennial oscillation

Abstract: The representation of the Arctic stratospheric circulation and the quasi-biennial oscillation (QBO) during the period 1981–2019 in a 40-yr China’s global reanalysis dataset (CRA-40) is evaluated by comparisons with the two widely used reanalysis datasets, ERA-5 and MERRA-2. CRA-40 has a comparable performance with ERA-5 and MERRA-2 in characterizing the winter and spring circulation in the lower and middle Arctic stratosphere. Specifically, differences in climatological polar-mean temperature and polar night jet among the three reanalyses are within ±0.5 K and ±0.5 m s–1, respectively. The onset dates of the stratospheric sudden warming and stratospheric final warming events at 10 hPa in CRA-40, together with the dynamics and circulation anomalies during the onset process of warming events, are nearly identical to the other two reanalyses with slight differences. By contrast, CRA-40 has deteriorated performance in describing the QBO below 10 hPa compared to the other two reanalysis products, as manifested by the larger easterly biases of the QBO index, the remarkably weaker amplitude of the QBO, and the weaker wavelet power of the QBO period. Such pronounced biases are mainly concentrated in the period 1981–1998 and largely reduced by at least 39% in 1999–2019. Thus, particular caution is needed in studying the QBO based on CRA-40. Compared to the lower and middle stratosphere, all the three reanalyses have greater disagreement in the upper stratosphere in both the polar region and the tropics.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return