Advanced Search
Article Contents

The Predictability Limit of Oceanic Mesoscale Eddy Tracks in the South China Sea


doi:  10.1007/s00376-024-3250-7

  • This study uses the nonlinear local Lyapunov exponent (NLLE) method to quantitatively estimate the predictability limit of oceanic mesoscale eddy (OME) tracks using three eddy datasets for both annual and seasonal mean. The results show that the predictability limit of OME tracks is about 39 days for cyclonic eddies (CEs) and 44 days for anticyclonic eddies (AEs) in the South China Sea (SCS). The predictability limit is related to the OME properties and seasons. The long-lived, large-amplitude, and -radius OMEs tend to have a higher predictability limit. The predictability limit of AE (CE) tracks is highest in autumn (winter) with 52 (53) days and lowest in spring (summer) with 40 (30) days. The spatial distribution of the predictability limit of OME tracks also varies with seasons, and we found that the higher predictability limits area often overlaps with periodic OMEs. Additionally, the predictability limit of periodic OME tracks is about 49 days for both CEs and AEs, which is 5-10 days higher than the mean values. Usually, in the SCS, OMEs with high predictability limit values often show extender and smoother trajectories and often move along the northern slope of SCS.
  • [1] Ruiqiang DING, Jianping LI, Baosheng LI, 2017: Determining the Spectrum of the Nonlinear Local Lyapunov Exponents in a Multidimensional Chaotic System, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1027-1034.  doi: 10.1007/s00376-017-7011-8
    [2] Se-Hwan YANG, LI Chaofan, and LU Riyu, 2014: Predictability of Winter Rainfall in South China as Demonstrated by the Coupled Models of ENSEMBLES, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 779-786.  doi: 10.1007/s00376-013-3172-2
    [3] BEI Naifang, Fuqing ZHANG, 2014: Mesoscale Predictability of Moist Baroclinic Waves: Variable and Scale-dependent Error Growth, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 995-1008.  doi: 10.1007/s00376-014-3191-7
    [4] WANG Huijun, FAN Ke, SUN Jianqi, LI Shuanglin, LIN Zhaohui, ZHOU Guangqing, CHEN Lijuan, LANG Xianmei, LI Fang, ZHU Yali, CHEN Hong, ZHENG Fei, 2015: A Review of Seasonal Climate Prediction Research in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 149-168.  doi: 10.1007/s00376-014-0016-7
    [5] Peter CHU, CHEN Yuchun, Akira KUNINAKA, 2005: Seasonal Variability of the Yellow Sea/East China Sea Surface Fluxes and Thermohaline Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 1-20.  doi: 10.1007/BF02930865
    [6] Quanjia ZHONG, Lifeng ZHANG, Jianping LI, Ruiqiang DING, Jie FENG, 2018: Estimating the Predictability Limit of Tropical Cyclone Tracks over the Western North Pacific Using Observational Data, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1491-1504.  doi: 10.1007/s00376-018-8008-7
    [7] ZHOU Feifan, DING Ruiqiang, FENG Guolin, FU Zuntao, DUAN Wansuo, 2012: Progress in the Study of Nonlinear Atmospheric Dynamics and Predictability of Weather and Climate in China (2007--2011), ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1048-1062.  doi: 10.1007/s00376-012-1204-y
    [8] CHEN Xiao, YAN Youfang, CHENG Xuhua, QI Yiquan, 2013: Performances of Seven Datasets in Presenting the Upper Ocean Heat Content in the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1331-1342.  doi: 10.1007/s00376-013-2132-1
    [9] Haoya LIU, Weibiao LI, Shumin CHEN, Rong FANG, Zhuo LI, 2018: Atmospheric Response to Mesoscale Ocean Eddies over the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1189-1204.  doi: 10.1007/s00376-018-7175-x
    [10] Jiangyu MAO, Ming WANG, 2018: The 30-60-day Intraseasonal Variability of Sea Surface Temperature in the South China Sea during May-September, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 550-566.  doi: 10.1007/s00376-017-7127-x
    [11] Yunyun LIU, Zeng-Zhen HU, Renguang WU, Xing YUAN, 2022: Causes and Predictability of the 2021 Spring Southwestern China Severe Drought, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1766-1776.  doi: 10.1007/s00376-022-1428-4
    [12] HU Wenting, WU Renguang, 2015: Relationship between South China Sea Precipitation Variability and Tropical Indo-Pacific SST Anomalies in IPCC CMIP5 Models during Spring-to-Summer Transition, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1308-1318.  doi: 10.1007/s00376-015-4250-4
    [13] Xuan LI, Ruiqiang DING, Jianping LI, 2019: Determination of the Backward Predictability Limit and Its Relationship with the Forward Predictability Limit, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 669-677.  doi: 10.1007/s00376-019-8205-z
    [14] Wansuo DUAN, Lichao YANG, Mu MU, Bin WANG, Xueshun SHEN, Zhiyong MENG, Ruiqiang DING, 2023: Recent Advances in China on the Predictability of Weather and Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1521-1547.  doi: 10.1007/s00376-023-2334-0
    [15] DUAN Wansuo, JIANG Zhina, XU Hui, 2007: Progress in Predictability Studies in China (2003--2006), ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1086-1098.  doi: 10.1007/s00376-007-1086-6
    [16] WU Duochang, MENG Zhiyong, YAN Dachun, 2013: The Predictability of a Squall Line in South China on 23 April 2007, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 485-502.  doi: 10.1007/s00376-012-2076-x
    [17] ZHU Benlu, LIN Wantao, ZHANG Yun, 2010: Analysis Study on Perturbation Energy and Predictability of Heavy Precipitation in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 382-392.  doi: 10.1007/s00376-009-8164-x
    [18] LANG Xianmei, WANG Huijun, 2005: Seasonal Differences of Model Predictability and the Impact of SST in the Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 103-113.  doi: 10.1007/BF02930873
    [19] WangHuijun, Xue Feng, Bi Xunqiang, 1997: The Interannual Variability and Predictability in a Global Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 554-562.  doi: 10.1007/s00376-997-0073-2
    [20] MU Mu, DUAN Wansuo, XU Hui, WANG Bo, 2006: Applications of Conditional Nonlinear Optimal Perturbation in Predictability Study and Sensitivity Analysis of Weather and Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 992-1002.  doi: 10.1007/s00376-006-0992-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 05 October 2023
Manuscript revised: 29 December 2023
Manuscript accepted: 01 February 2024
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Predictability Limit of Oceanic Mesoscale Eddy Tracks in the South China Sea

Abstract: This study uses the nonlinear local Lyapunov exponent (NLLE) method to quantitatively estimate the predictability limit of oceanic mesoscale eddy (OME) tracks using three eddy datasets for both annual and seasonal mean. The results show that the predictability limit of OME tracks is about 39 days for cyclonic eddies (CEs) and 44 days for anticyclonic eddies (AEs) in the South China Sea (SCS). The predictability limit is related to the OME properties and seasons. The long-lived, large-amplitude, and -radius OMEs tend to have a higher predictability limit. The predictability limit of AE (CE) tracks is highest in autumn (winter) with 52 (53) days and lowest in spring (summer) with 40 (30) days. The spatial distribution of the predictability limit of OME tracks also varies with seasons, and we found that the higher predictability limits area often overlaps with periodic OMEs. Additionally, the predictability limit of periodic OME tracks is about 49 days for both CEs and AEs, which is 5-10 days higher than the mean values. Usually, in the SCS, OMEs with high predictability limit values often show extender and smoother trajectories and often move along the northern slope of SCS.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return