Advanced Search
Article Contents

Peculiar Temporal Structure of the South China Sea Summer Monsoon


doi: 10.1007/s00376-997-0018-9

  • Beijing located at the junction of four major components of the Asian-Australia monsoon system (the Indian, the western North Pacific, the East Asian subtropical, and the Indonesian-Australian monsoons), the monsoon cli-mate over the South China Sea (SCS) exhibits some unique features. Evidences are presented in this paper to reveal and document the following distinctive features in the temporal structure of the SCS summer monsoon:(1) pronounced monsoon singularities in the lower tropospheric monsoon flows which include the pre-onset and withdrawal easterly surges and the southwesterly monsoon bursts at Julian pentad 34-35 (June 15-24) and pentad 46-47 (August 14-23);(2) four prominent subseasonal cycles (alternative occurrences of climatological active and break monsoons);(3) considerably larger year-to-year variations in convective activity on intraseasonal time scale compared to those over the Bay of Bengal and the Philippine Sea;(4) the redness of the climatological mean spectrum of precipitation / deep convection on synoptic to intraseasona] time scales in the central SCS;(5) a remarkable asymmetry in the seasonal transitions between summer and winter monsoons and an extremely abrupt mid-May transition (the outburst of monsoon rain and the sudden switch in tie lower troposphere winds from an easterly to a westerly regime);(6) the bi-modal interannual variation of summer monsoon onset (normal and delayed modes).In addition, the monsoon rainfall displays enormous east-west gradient over the central SCS. Possible causes for these features are discussed. A number of specific science questions concerning some of the peculiar features are raised for the forthcoming SCS monsoon experiment to address
  • [1] A. Mary Selvam, 1993: A Universal Spectrum for Interannual Variability of Monsoon Rainfall over India, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 221-226.  doi: 10.1007/BF02919144
    [2] Wang Huijun, 1994: Modelling the Interannual Variation of Regional Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 230-238.  doi: 10.1007/BF02666549
    [3] CHEN Guanghua, HUANG Ronghui, 2008: Influence of Monsoon over the Warm Pool on Interannual Variation on Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 319-328.  doi: 10.1007/s00376-008-0319-7
    [4] Qingwei ZENG, Yun ZHANG, Hengchi LEI, Yanqiong XIE, Taichang GAO, Lifeng ZHANG, Chunming WANG, Yanbin HUANG, 2019: Microphysical Characteristics of Precipitation during Pre-monsoon, Monsoon, and Post-monsoon Periods over the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1103-1120.  doi: 10.1007/s00376-019-8225-8
    [5] Wang Shiyu, QianYongfu, 2000: Diagnostic Study of Apparent Heat Sources and Moisture Sinks in the South China Sea and Its Adjacent Areas during the Onset of 1998 SCS Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 285-298.  doi: 10.1007/s00376-000-0010-0
    [6] Fu Congbin, J. Fletcher, 1988: LARGE SIGNALS OF CLIMATIC VARIATION OVER THE OCEAN IN THE ASIAN MONSOON REGION, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 389-404.  doi: 10.1007/BF02656786
    [7] YUAN Weihua, YU Rucong, LI Jian, 2013: Changes in the Diurnal Cycles of Precipitation over Eastern China in the Past 40 Years, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 461-467.  doi: 10.1007/s00376-012-2092-x
    [8] Liu Liping, Feng Jinming, Chu Rongzhong, Zhou Yunjun, K. Ueno, 2002: The Diurnal Variation of Precipitation in Monsoon Season in the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 365-378.  doi: 10.1007/s00376-002-0028-6
    [9] Liudan DING, Tim LI, Ying SUN, 2021: Subseasonal and Synoptic Variabilities of Precipitation over the Yangtze River Basin in the Summer of 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2108-2124.  doi: 10.1007/s00376-021-1133-8
    [10] Jiang Jing, Qian Yongfu, 1999: The Study on the Interannual Variation and the Mechanism of the South China Sea Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 544-558.  doi: 10.1007/s00376-999-0030-3
    [11] Chen Lieting, Wu Renguang, 2000: Interannual and Decadal Variations of Snow Cover over Qinghai-Xizang Plateau and Their Relationships to Summer Monsoon Rainfall in China, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 18-30.  doi: 10.1007/s00376-000-0040-7
    [12] Qian Weihong, Zhu Yafen, Xie An, Ye Qian, 1998: Seasonal and Interannual Variations of Upper Tropospheric Water Vapor Band Brightness Temperature over the Global Monsoon Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 337-345.  doi: 10.1007/s00376-998-0005-9
    [13] YUAN Weihua, 2013: Diurnal Cycles of Precipitation over Subtropical China in IPCC AR5 AMIP Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1679-1694.  doi: 10.1007/s00376-013-2250-9
    [14] Chun-Ji KIM, QIAN Weihong, Hyun-Suk KANG, Dong-Kyou LEE, 2010: Interdecadal Variability of East Asian Summer Monsoon Precipitation over 220 Years (1777--1997), ADVANCES IN ATMOSPHERIC SCIENCES, 27, 253-264.  doi: 10.1007/s00376-009-8079-6
    [15] LI Hongmei, ZHOU Tianjun, LI Chao, 2010: Decreasing Trend in Global Land Monsoon Precipitation over the Past 50 Years Simulated by a Coupled Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 285-292.  doi: 10.1007/s00376-009-8173-9
    [16] WonMoo KIM, Jong-Ghap JHUN, Kyung-Ja HA, Masahide KIMOTO, 2011: Decadal Changes in Climatological Intraseasonal Fluctuation of Subseasonal Evolution of Summer Precipitation over the Korean Peninsula in the mid-1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 591-600.  doi: 10.1007/s00376-010-0037-9
    [17] SUN Bo, ZHU Yali, WANG Huijun, 2011: The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1039-1048.  doi: 10.1007/s00376-010-0093-1
    [18] CHEN Wei, LU Riyu, 2014: The Interannual Variation in Monthly Temperature over Northeast China during Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 515-524.  doi: 10.1007/s00376-013-3102-3
    [19] HUANG Gang, 2004: An Index Measuring the Interannual Variation of the East Asian Summer Monsoon--The EAP Index, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 41-52.  doi: 10.1007/BF02915679
    [20] Xue Feng, 2001: Interannual to Interdecadal Variation of East Asian Summer Monsoon and its Association with the Global Atmospheric Circulation and Sea Surface Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 567-575.  doi: 10.1007/s00376-001-0045-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1997
Manuscript revised: 10 April 1997
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Peculiar Temporal Structure of the South China Sea Summer Monsoon

  • 1. Department of Meteorology, University of Hawaii, USA,Department of Meteorology, University of Hawaii, USA

Abstract: Beijing located at the junction of four major components of the Asian-Australia monsoon system (the Indian, the western North Pacific, the East Asian subtropical, and the Indonesian-Australian monsoons), the monsoon cli-mate over the South China Sea (SCS) exhibits some unique features. Evidences are presented in this paper to reveal and document the following distinctive features in the temporal structure of the SCS summer monsoon:(1) pronounced monsoon singularities in the lower tropospheric monsoon flows which include the pre-onset and withdrawal easterly surges and the southwesterly monsoon bursts at Julian pentad 34-35 (June 15-24) and pentad 46-47 (August 14-23);(2) four prominent subseasonal cycles (alternative occurrences of climatological active and break monsoons);(3) considerably larger year-to-year variations in convective activity on intraseasonal time scale compared to those over the Bay of Bengal and the Philippine Sea;(4) the redness of the climatological mean spectrum of precipitation / deep convection on synoptic to intraseasona] time scales in the central SCS;(5) a remarkable asymmetry in the seasonal transitions between summer and winter monsoons and an extremely abrupt mid-May transition (the outburst of monsoon rain and the sudden switch in tie lower troposphere winds from an easterly to a westerly regime);(6) the bi-modal interannual variation of summer monsoon onset (normal and delayed modes).In addition, the monsoon rainfall displays enormous east-west gradient over the central SCS. Possible causes for these features are discussed. A number of specific science questions concerning some of the peculiar features are raised for the forthcoming SCS monsoon experiment to address

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return