高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京地区一次降雪系统大气水凝物输送特征及降雪微物理机制的数值模拟研究

刘香娥 何晖 陈羿辰 高茜 王永庆 杨燕

刘香娥, 何晖, 陈羿辰, 等. 2022. 北京地区一次降雪系统大气水凝物输送特征及降雪微物理机制的数值模拟研究[J]. 大气科学, 46(3): 507−519 doi: 10.3878/j.issn.1006-9895.2110.20212
引用本文: 刘香娥, 何晖, 陈羿辰, 等. 2022. 北京地区一次降雪系统大气水凝物输送特征及降雪微物理机制的数值模拟研究[J]. 大气科学, 46(3): 507−519 doi: 10.3878/j.issn.1006-9895.2110.20212
LIU Xiang’ e, HE Hui, CHEN Yichen, et al. 2022. Numerical Simulation Studies of Atmospheric Hydrometeor Transportation Characteristics and Snowfall Microphysical Mechanism during a Snowfall System in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 507−519 doi: 10.3878/j.issn.1006-9895.2110.20212
Citation: LIU Xiang’ e, HE Hui, CHEN Yichen, et al. 2022. Numerical Simulation Studies of Atmospheric Hydrometeor Transportation Characteristics and Snowfall Microphysical Mechanism during a Snowfall System in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 507−519 doi: 10.3878/j.issn.1006-9895.2110.20212

北京地区一次降雪系统大气水凝物输送特征及降雪微物理机制的数值模拟研究

doi: 10.3878/j.issn.1006-9895.2110.20212
基金项目: 国家重点研发计划项目2016YFA0601704,国家自然科学基金项目42005078、41675138,北京市自然科学基金项目8182024
详细信息
    作者简介:

    刘香娥,女,1982年生,博士,正高级工程师,从事云降水物理与人工影响天气研究。E-mail:lxe3399@163.com

    通讯作者:

    何晖,E-mail: hehui@bj.cma.gov.cn

  • 中图分类号: P401

Numerical Simulation Studies of Atmospheric Hydrometeor Transportation Characteristics and Snowfall Microphysical Mechanism during a Snowfall System in Beijing

Funds: National Key Research and Development Program of China (Grant 2016YFA0601704), National Natural Science Foundation of China (Grants 42005078, 41675138),Beijing Natural Science Foundation (Grant 8182024)
  • 摘要: 北京冬季降雪云系存在丰富的可开发利用的云水资源。出于人工增雪研究和充分开发云水资源的需要,文中对北京2019年11月29日发生的年度首场降雪进行了观测,对其资料做了分析和中尺度数值模拟,研究了降雪过程的宏观特征、水凝物输送及降雪的微物理机制。结果表明:影响本次北京降雪的是稳定性层状冷云云系,水凝物主要从北京区域的西边界和南边界输送到区域内,而从东边界和北边界流出,具有西向和南向分量的湿气流是降雪云系水物质的输送通道。降雪云中的水凝物基本全为冰晶和雪,有少量的云水,整层云系都含有非常丰富的水汽并且贯穿整个降雪时段。在冰面过饱和环境中,水汽凝华(Prds)是雪的主要增长过程;其次是云冰增长成雪(Prci)和云冰聚合成雪(Prai)的过程。
  • 图  1  2019年11月29日08:00至30日08:00(a)实况和(b)模拟24 h地面降水量(单位:mm)分布。黑点为闫家坪站位置

    Figure  1.  Distributions of (a) observed and (b) simulated 24-hour cumulative rainfall (units: mm) from 0800 BT (Beijing time) November 29 to 0800 BT November 30, 2019. The black dot is the location of Yanjiaping Station

    图  2  2019年11月29日(a)15:00和(b)22:00 FY-2G卫星云顶亮温图

    Figure  2.  TBB (Black Body Temperature) images from FY-2G satellite on top of cloud at (a) 1500 BT and (b) 2200 BT November 29, 2019

    图  3  2019年11月29~30日闫家坪站气象要素的时间演变。柱状图:降水量(单位:mm);蓝线:气温(单位:°C);绿线:相对湿度

    Figure  3.  Time evolution of various elements at the Yanjiaping meteorological station. Columnars: precipitation (units: mm); blue line: temperature (units: °C); green line: relative humidity

    图  4  2019年11月29~30日闫家坪站(a)观测和(b)模拟的云雷达回波的时间—高度演变

    Figure  4.  Time–height evolution of the echo intensity observed by a cloud radar from November 29 to November 30, 2019

    图  5  2019年11月29~30日闫家坪站半小时降水量观测(蓝色柱状图)与模拟(绿色实线)对比

    Figure  5.  Simulated (green line) and observed (blue columnars) 30-min accumulated precipitation (units: mm) at the Yanjiaping station from November 29 to November 30, 2019

    图  6  2019年11月29日17:00(a)850 hPa、(b)700 hPa水汽通量(填色,单位:g s kg−1)和风场(黑色箭头)分布

    Figure  6.  Distributions of water vapor flux (shaded) and wind field (black arrows) at (a) 850 hPa and (b) 700 hPa at 1700 BT on November 29, 2019

    图  7  2019年11月29~30日模拟云系两相水凝物总质量时间演变

    Figure  7.  Time evolution of the total hydrometeor content in two phase in the simulated cloud system from November 29 to November 30, 2019

    图  8  2019年11月30日00:00穿过北京区域(39.3°~41.5°N,115.3°~117.5°E)各边界单位截面积的(a)云水(Qc)、(b)雪(Qs)、(c)冰晶(Qi)、(d)雨水(Qr)、(e)霰(Qg)的通量及总量随高度分布以及(f)29~30日总水凝物通量(带标记的线)和总量(虚线)的垂直积分时间演变

    Figure  8.  Vertical distribution of the fluxes of (a) cloud water (Qc), (b) snow (Qs), (c) ice (Qi), (d) rain (Qr), (c) graupel (Qg and the total flux across each boundary of the Beijing region (39.3°–41.5°N, 115.3°–117.5°E) at 0000 BT November 30, 2019. (f) The time series of the vertical integration of the fluxes (VIF; solid lines with symbols) and the vertically integrated flux convergences (VIFC; dashed line) of all condensates from November 29 to November 30, 2019

    图  9  2019年11月29日(a)16:00和(b)23:00北京区域模拟的小时降雨量(单位:mm)分布

    Figure  9.  Distributions of simulated hourly rainfall (units: mm) in Beijing region at 1600 BT and 2300 BT 29 November 2019

    图  10  2019年11月(a)29日16:00沿40.3°N和(b)30日00:00沿40°N水凝物质量浓度的纬向剖面以及(c)区域(39.3°~41.5°N,115.3°~117.5°E)内水凝物质量浓度总量垂直廓线。(a、b)中彩色阴影:雪;蓝色实线:冰晶,单位:g kg−1;黑色虚线:等温线,单位:°C。(c)中黑实线:雪质量浓度总量;黑虚线:冰晶质量浓度总量,单位:g m−3

    Figure  10.  Vertical sections of water hydrometeor mixing ratio (a) along 40.3°N at 1600 BT 29 and (b) along 40°N at 0000 BT 30 November 2019, and (c) vertical profiles of area accumulation of the total water content of hydrometeors over the region (39.3°–41.5°N, 115.3°–117.5°E). (a, b) Shaded: snow mixing ratio; blue lines: ice crystal mixing ratio, units: g kg−1; black dotted line: isotherm, units: °C. (c) Black solid line: total snow mixing ratio; black dotted lines: total ice mixing ratio, units: g m−3

    图  11  2019年11月29~30日闫家坪站(a)水汽、云水、雨水质量浓度和(b)冰晶、雪、霰质量浓度随时间和高度的分布,单位:g kg−1

    Figure  11.  Distribution of (a) water vapor, cloud, rain mixing ratio and (b) ice, snow graupel mixing ratio (units: g kg−1) with time and height in Yanjiaping station from November 29 to November 30, 2019

    图  12  2019年11月29~30日闫家坪站(a)冰面过饱和度(彩色阴影)和水汽凝华成雪(Prds,黑线)、雪淞附云滴(Psacws,绿色线)、云冰聚合成雪(Prai,紫色线)过程的转换率以及(b)云冰自动转换为雪(Prci,红色线)、雪晶升华(Eprds,紫色线)过程的转换率随时间和高度的分布。转换率单位:10−8 kg kg−1 s−1

    Figure  12.  Distribution of the supersaturation with respect to ice (shaded), (a) conversion rate (units: 10−8 kg kg−1 s−1) of the deposition of snow (Prds , black line), droplet accretion by snow (Psacws, green line), accretion cloud ice by snow (Prai, purple line) and (b) conversion rate of the auto conversion cloud ice to snow (Prci,red line), sublimation of snow (Eprds, grey line) with time and height in Yanjiaping station from November 29 to November 30, 2019.

  • [1] 高茜, 郭学良, 刘香娥, 等. 2020. 北京北部山区两次降雪过程微物理形成机制的观测—模拟研究 [J]. 大气科学, 44(2): 407−420. doi: 10.3878/j.issn.1006-9895.1901.18172

    Gao Q, Guo X L, Liu X E, et al. 2020. Numerical simulation and observation study on microphysical formation processes of two different snowfall cases in northern mountain area of Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 407−420. doi: 10.3878/j.issn.1006-9895.1901.18172
    [2] 龚佃利, 边道相. 2002. 山东省空中水资源的初步分析 [J]. 气候与环境研究, 7(4): 474−482. doi: 10.3969/j.issn.1006-9585.2002.04.012

    Gong D L, Bian D X. 2002. An elementary analysis of water vapour resources over Shandong Province [J]. Climatic Environ. Res. (in Chinese), 7(4): 474−482. doi: 10.3969/j.issn.1006-9585.2002.04.012
    [3] 胡国权, 丁一汇. 2003. 1991年江淮暴雨时期的能量和水汽循环研究 [J]. 气象学报, 61(2): 146−163. doi: 10.3321/j.issn:0577-6619.2003.02.002

    Hu G Q, Ding Y H. 2003. A study on the energy and water cycles over Changjiang–Huaihe River basins during the 1991 heavy rain periods [J]. Acta Meteor. Sinica (in Chinese), 61(2): 146−163. doi: 10.3321/j.issn:0577-6619.2003.02.002
    [4] 黄钰, 郭学良, 毕凯, 等. 2020. 北京延庆山区降雪云物理特征的垂直观测和数值模拟研究 [J]. 大气科学, 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258

    Huang Y, Guo X L, Bi K, et al. 2020. Vertical observation and numerical simulation of the clouds physical characteristics of snow-producing over Yanqing mountain area in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258
    [5] 李宏宇, 王华, 洪延超. 2006. 锋面云系降水中的增雨潜力数值研究 [J]. 大气科学, 30(2): 341−350. doi: 10.3878/j.issn.1006-9895.2006.02.16

    Li H Y, Wang H, Hong Y C. 2006. A numerical study of precipitation enhancement potential in frontal cloud system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(2): 341−350. doi: 10.3878/j.issn.1006-9895.2006.02.16
    [6] 刘郁珏, 苗世光, 刘磊, 等. 2019. 修正WRF次网格地形方案及其对风速模拟的影响 [J]. 应用气象学报, 30(1): 70−81. doi: 10.11898/1001-7313.20190107

    Liu Y J, Miao S G, Liu L, et al. 2019. Effects of a modified sub-grid-scale terrain parameterization scheme on the simulation of low–layer wind over complex terrain [J]. J. Appl. Meteor. Sci. (in Chinese), 30(1): 70−81. doi: 10.11898/1001-7313.20190107
    [7] 马京津, 高晓清. 2006. 华北地区夏季平均水汽输送通量和轨迹的分析 [J]. 高原气象, 25(5): 893−899. doi: 10.3321/j.issn:1000-0534.2006.05.017

    Ma J J, Gao X Q. 2006. The transportation paths of water vapor and its relation to climate change over North China [J]. Plateau Meteor. (in Chinese), 25(5): 893−899. doi: 10.3321/j.issn:1000-0534.2006.05.017
    [8] Ma X C, Bi K, Chen Y B, et al. 2017. Characteristics of winter clouds and precipitation over the mountains of northern Beijing [J]. Advances in Meteorology, 2017: 3536107. doi: 10.1155/2017/3536107
    [9] 马新成, 董晓波, 毕凯, 等. 2021. 北京海坨山区低槽降雪云系演变特征的观测研究 [J]. 气象学报, 79(3): 428−442. doi: 10.11676/qxxb2021.029

    Ma X C, Dong X B, Bi K, et al. 2021. The characteristics and evolution of low trough snowfall cloud system in the Haituo Mountain, Beijing [J]. Acta Meteorologica Sinica (in Chinese), 79(3): 428−442. doi: 10.11676/qxxb2021.029
    [10] 平凡, 罗哲贤. 2007. 热带对流热量与水汽收支的数值模拟研究 [J]. 地球物理学报, 50(5): 1351−1361. doi: 10.3321/j.issn:0001-5733.2007.05.010

    Ping F, Luo Z X. 2007. The numeral simulated study of convective heat and moisture budget in the tropical [J]. Chinese J. Geophys. (in Chinese), 50(5): 1351−1361. doi: 10.3321/j.issn:0001-5733.2007.05.010
    [11] 齐彦斌, 冉令坤, 洪延超. 2009. 云凝结物平流输送对降水云系发展影响的数值模拟研究 [J]. 气象学报, 67(6): 1045−1057. doi: 10.3321/j.issn:0577-6619.2009.06.014

    Qi Y B, Ran L K, Hong Y C. 2009. Numerical study of influence of cloud–hydrometeor advections on precipitable cloud system [J]. Acta Meteor. Sinica (in Chinese), 67(6): 1045−1057. doi: 10.3321/j.issn:0577-6619.2009.06.014
    [12] 强安丰, 魏加华, 解宏伟, 等. 2019. 三江源区大气水汽含量时空特征及其转化变化 [J]. 水科学进展, 30(1): 14−23. doi: 10.14042/j.cnki.32.1309.2019.01.002

    Qiang A F, Wei J H, Xie H W, et al. 2019. Spatial-temporal characteristics and changes of atmospheric water vapor in the Three River Headwaters Region [J]. Adv. Water Sci. (in Chinese), 30(1): 14−23. doi: 10.14042/j.cnki.32.1309.2019.01.002
    [13] 任宏利, 张培群, 李维京, 等. 2004. 中国西北东部地区春季降水及其水汽输送特征 [J]. 气象学报, 62(3): 365−374. doi: 10.3321/j.issn:0577-6619.2004.03.011

    Ren H L, Zhang P Q, Li W J, et al. 2004. Characteristics of precipitation and water vapor transport during springtime in the eastern Northwest China [J]. Acta Meteor. Sinica (in Chinese), 62(3): 365−374. doi: 10.3321/j.issn:0577-6619.2004.03.011
    [14] 施晓晖, 徐祥德, 程兴宏. 2009. 2008年雪灾过程高原上游关键区水汽输送机制及其前兆性“强信号”特征 [J]. 气象学报, 67(3): 478−487. doi: 10.3321/j.issn:0577-6619.2009.03.015

    Shi X H, Xu X D, Cheng X H. 2009. Premonitory of water vapor transport in the upstream key region over the Tibetan Plateau during the 2008 snowstorm disaster in South China [J]. Acta Meteor. Sinica (in Chinese), 67(3): 478−487. doi: 10.3321/j.issn:0577-6619.2009.03.015
    [15] 孙晶, 王鹏云, 李想, 等. 2007. 北方两次不同类型降雪过程的微物理模拟研究 [J]. 气象学报, 65(1): 29−44. doi: 10.11676/qxxb2007.003

    Sun J, Wang P Y, Li X, et al. 2007. Numerical study on microphysical processes of two different snowfall cases in North China [J]. Acta Meteor. Sinica (in Chinese), 65(1): 29−44. doi: 10.11676/qxxb2007.003
    [16] 唐洁, 郭学良, 常祎. 2018. 青藏高原那曲地区夏季一次对流云降水过程的云微物理及区域水分收支特征 [J]. 大气科学, 42(6): 1327−1343. doi: 10.3878/j.issn.1006-9895.1801.17202

    Tang J, Guo X L, Chang Y. 2018. Cloud microphysics and regional water budget of a summer precipitation process at Naqu over the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(6): 1327−1343. doi: 10.3878/j.issn.1006-9895.1801.17202
    [17] Tao W K, Simpson J, Sui C H, et al. 1993. Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation [J]. J. Atmos. Sci., 50(5): 673−690. doi:10.1175/1520-0469(1993)050<0673:HMAWBO>2.0.CO;2
    [18] 陶玥, 李军霞, 党娟, 等. 2015. 北京一次积层混合云系结构和水分收支的数值模拟分析 [J]. 大气科学, 39(3): 445−460. doi: 10.3878/j.issn.1006-9895.1412.13209

    Tao Y, Li J X, Dang J, et al. 2015. A numerical study on precipitation process and moisture budget of stratiform and embedded convective cloud over Beijing area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(3): 445−460. doi: 10.3878/j.issn.1006-9895.1412.13209
    [19] 王婧羽, 崔春光, 王晓芳, 等. 2014. 2012年7月21日北京特大暴雨过程的水汽输送特征 [J]. 气象, 40(2): 133−145. doi: 10.7519/j.issn.1000-0526.2014.02.001

    Wang J Y, Cui C G, Wang X F, et al. 2014. Analysis on water vapor transport and budget of the severe torrential rain over Beijing region on 21 July 2012 [J]. Meteor. Mon. (in Chinese), 40(2): 133−145. doi: 10.7519/j.issn.1000-0526.2014.02.001
    [20] 徐淑英. 1958. 我国的水汽输送和水份平衡 [J]. 气象学报, 29(1): 33−43. doi: 10.11676/qxxb1958.005

    Xu S Y. 1958. Water-vapour transfer and water balance over the eastern China [J]. Acta Meteor. Sinica (in Chinese), 29(1): 33−43. doi: 10.11676/qxxb1958.005
    [21] 杨青, 姚俊强, 赵勇, 等. 2013. 伊犁河流域水汽含量时空变化及其和降水量的关系 [J]. 中国沙漠, 33(4): 1174−1183. doi: 10.7522/j.issn.1000-694X.2013.00166

    Yang Q, Yao J Q, Zhao Y, et al. 2013. Spatial-temporal variation of water vapor and its relationship with the precipitation in the Ili River Basin [J]. Journal of Desert Research (in Chinese), 33(4): 1174−1183. doi: 10.7522/j.issn.1000-694X.2013.00166
    [22] 张亦洲, 苗世光, 李青春, 等. 2017. 北京城市下垫面对雾影响的数值模拟研究 [J]. 地球物理学报, 60(1): 22−36. doi: 10.6038/cjg20170103

    Zhang Y Z, Miao S G, Li Q C, et al. 2017. Numerical simulation of the impact of urban underlying surface on fog in Beijing [J]. Chinese J. Geophys. (in Chinese), 60(1): 22−36. doi: 10.6038/cjg20170103
    [23] 周非非, 洪延超, 赵震. 2010. 一次层状云系水分收支和降水机制的数值研究 [J]. 气象学报, 68(2): 182−194. doi: 10.11676/qxxb2010.019

    Zhou F F, Hong Y C, Zhao Z. 2010. A numerical study of the moisture budget and the mechanism for precipitation for a stratiform cloud system [J]. Acta Meteor. Sinica (in Chinese), 68(2): 182−194. doi: 10.11676/qxxb2010.019
  • 加载中
图(12)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  38
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 录用日期:  2021-10-19
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回