Comparative Analysis of Rainfall Droplet Spectra of Typhoon Wipha (201907) in Chongzuo and Fangchenggang, China
-
摘要: 利用崇左国家气象观测站、防城国家基准气候站的雨滴谱观测数据,结合观测站雨量数据及雷达观测资料,分析2019年8月2~3日台风“韦帕”影响期间内陆背风侧(LSI)、近海岸迎风侧(WSC)不同降水阶段的雨滴谱结构特征及其差异。结果显示,台风“韦帕”降雨以中、小雨滴贡献为主,尤其中雨滴贡献率稳定在70%以上。LSI处以层状云降水为主,雨强相对平缓,WSC处表现为积层混合云降水,雨强较大且波动剧烈。因强烈的对流上升运动导致WSC的雨滴数浓度、雨滴直径明显大于LSI。LSI处在台风登陆后雨势增强的最主要因素是雨滴直径增大,WSC处由台风眼墙转变为强对流螺旋雨带影响后其雨势增强则主要是由于雨滴数浓度增加。台风“韦帕”对流降水的质量加权平均直径均值为1.85 mm,对数标准化数浓度均值为3.95 mm−1 m−3;LSI处对流降水位于海洋性对流区域内,而WSC处则介于海洋性和大陆性对流之间。Abstract: We analyzed the structural characteristics and differences in raindrop spectrum at different precipitation stages on the inland leeward side (LSI) and near-coast windward side (WSC) during the impact of typhoon Wipha from August 2 to 3, 2019. We used the raindrop spectrum observation data from Chongzuo National Meteorological Observatory and Fangcheng National Reference Climate Station, combined with rainfall data and radar observation data for the analysis. The results show that typhoon Wipha’s rainfall is mainly contributed by medium and small raindrops, with the proportion of medium raindrops consistently exceeding 70%. The rainfall at LSI is dominated by stratiform clouds with relatively gentle rain intensity, while the rainfall at WSC is characterized by mixed cumulus clouds with considerable rain intensity and severe fluctuations. Raindrop concentration and diameter are significantly larger at WSC than at LSI due to the considerable convective activity and upward velocity. The main factor for the increase in rain intensity at LSI after typhoon landfall is an increase in raindrop diameter. Meanwhile, the increase in rain intensity at WSC after the change from typhoon eye wall to a strong convective spiral rain band is mainly due to an increase in raindrop number concentration. The average mass-weighted mean diameter of typhoon Wipha’s convective precipitation is 1.85 mm, with a logarithmic normalized intercept of 3.95 mm−1 m−3. Convective precipitation occurs in the maritime convective region at LSI, while it occurs between maritime and continental convection at WSC.
-
Key words:
- Typhoon rainstorm /
- Spiral rainband /
- Eyewall /
- Near-coastal mountain range /
- Raindrop spectrum
-
图 1 (a)台风“韦帕”进入北部湾后的移动路径;(b)2019年8月2日08:00至3日08:00(北京时,下同)崇左站、防城站小时雨量时间序列
Figure 1. (a) Observed track of typhoon Wipha after entering the Beibu Gulf; (b) time series of 1-h accumulated precipitation at Chongzuo station and Fangcheng station from 0800 BJT (Beijing time) August 2 to 0800 BJT August 3, 2019
图 2 2019年8月2日(a)12:03、(b)14:00、(c)19:03及3日(d)01:04、(e)03:01、(f)05:03的雷达组合反射率(紫色圆点为崇左站位置,棕色圆点为防城站位置)
Figure 2. The radar combined reflectivity at (a) 1203 BJT August 2, (b) 1400 BJT August 2, (c) 1903 BJT August 2, (d) 0104 BJT August 3, (e) 0301 BJT August 3, (f) 0503 BJT August 3, 2019. Purple dot shows the location of Chongzuo station and the brown dot represents Fangcheng station
图 3 台风“韦帕”影响期间(a)内陆背风侧(LSI)、(b)近海岸迎风侧(WSC)雨滴数浓度(色阶)、雨滴直径(色阶高度)及雨强(红色曲线)随时间变化
Figure 3. Time series of raindrop number concentration (shaded areas), raindrop diameter (height of shaded areas), and rain intensity (red solid line) at (a) inland leeward side (LSI) and (b) near-coast windward side (WSC) during the impact of typhoon Wipha
图 5 LSI、WSC各降水阶段质量加权平均直径Dm和对数标准化数浓度lgNw散点分布情况。黑色曲线为雨强R=10 mm h−1;深蓝色矩形框、红色矩形框分别对应Bringi et al.(2003)指出的海洋性、大陆性对流降水落区,黑色框中列出了各类研究对流降水的特征量平均值
Figure 5. Scatter plot of mass-weighted mean diameter (Dm) versus logarithmic normalized intercept (lgNw) in different rainfall stages at LSI and WSC. The black curve shows rain intensity of 10 mm h−1. Outlined rectangles of dark blue and red correspond to the maritime and continental convective clusters reported by Bringi et al. (2003), and the black box lists the average values of the characteristic quantities for convective precipitation in various research
表 1 崇左站、防城站各降水阶段及主要影响系统
Table 1. Different rainfall stages and the main influence systems at Chongzuo station and Fangcheng station
站点 地理环境 降水时段 影响系统 崇左站 内陆背风侧(LSI) 2019年8月2日12:00~21:00(S1) 螺旋雨带(登陆前) 2019年8月2日21:00至3日05:00(S2) 螺旋雨带(登陆后) 防城站 近海岸迎风侧(WSC) 2019年8月2日14:00~22:00(S1) 台风眼墙 2019年8月3日00:00~03:00(S2) 螺旋雨带(对流旺盛) 表 2 LSI、WSC各降水阶段微物理特征量的平均值
Table 2. Average values of microphysical parameters in different rainfall stages at LSI and WSC
各降水阶段 微物理特征量 R/mm h−1 Dm/mm lgNw /mm−1 m−3 W/g m−3 LSI S1 2.34 1.21 3.61 0.15 LSI S2 4.68 1.52 3.60 0.29 WSC S1 11.92 1.58 3.86 0.70 WSC S2 22.19 1.56 4.10 1.17 表 3 LSI、WSC不同雨强等级下各档雨滴对降水的贡献率
Table 3. Contributions of raindrops in each bin to precipitation under different rain rates at LSI and WSC
降水等级/mm h−1 LSI雨强等级 WSC雨强等级 P1 P2 P3 P1 P2 P3 0<R≤2 35.38% 64.54% 0.08% 65.25% 32.61% 2.14% 2<R≤5 13.08% 84.11% 2.81% 26.35% 70.62% 3.03% 5<R≤10 8.34% 85.77% 5.89% 12.27% 82.39% 5.34% 10<R≤20 6.16% 90.95% 2.89% 8.37% 85.04% 6.59% 20<R≤40 4.38% 93.69% 1.93% 4.98% 82.74% 12.28% R>40 3.99% 77.75% 18.26% -
[1] Atlas D, Srivastava R C, Sekhon R S. 1973. Doppler radar characteristics of precipitation at vertical incidence [J]. Rev. Geophys., 11(1): 1−35. doi: 10.1029/RG011i001p00001 [2] Bao X W, Wu L G, Tang B, et al. 2019. Variable raindrop size distributions in different rainbands associated with typhoon Fitow (2013) [J]. J. Geophys. Res., 124(22): 12262−12281. doi: 10.1029/2019JD030268 [3] Bao X W, Wu L G, Zhang S, et al. 2020. Distinct raindrop size distributions of convective inner- and outer-rainband rain in typhoon Maria (2018) [J]. J. Geophys. Res., 125(14): e2020JD032482. doi: 10.1029/2020JD032482 [4] Battaglia A, Rustemeier E, Tokay A, et al. 2010. PARSIVEL snow observations: A critical assessment [J]. J. Atmos. Oceanic Technol., 27(2): 333−344. doi: 10.1175/2009JTECHA13321 [5] Bringi V N, Chandrasekar V, Hubbert J, et al. 2003. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis [J]. J. Atmos. Sci., 60(2): 354−365. doi: 10.1175/1520-0469(2003)060<0354:rsdidc>2.0.co;2 [6] Chang W Y, Wang T C C, Lin P L. 2009. Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar [J]. J. Atmos. Oceanic Technol., 26(10): 1973−1993. doi: 10.1175/2009jtecha1236.1 [7] Chen B J, Wang Y, Ming J. 2012. Microphysical characteristics of the raindrop size distribution in typhoon Morakot (2009) [J]. J. Trop. Meteor., 18(2): 162−171. doi: 10.3969/j.issn.1006-8775.2012.02.006 [8] Chen B J, Yang J, Pu J P. 2013. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China [J]. J. Meteor. Soc. Jpn. Ser. II, 91(2): 215−227. doi: 10.2151/jmsj.2013-208 [9] 陈联寿, 孟智勇, 丛春华. 2017. 台风暴雨落区研究综述 [J]. 海洋气象学报, 37(4): 1−7. doi: 10.19513/j.cnki.issn2096-3599.2017.04.001Chen Lianshou, Meng Zhiyong, Cong Chunhua. 2017. An overview on the research of typhoon rainfall distribution [J]. J. Mar. Meteor. (in Chinese), 37(4): 1−7. doi: 10.19513/j.cnki.issn2096-3599.2017.04.001 [10] 陈淑琴, 李英, 范悦敏, 等. 2021. 台风“山竹”(2018)远距离暴雨的成因分析 [J]. 大气科学, 45(3): 573–587. Chen Shuqin, Li Ying, Fan Yuemin, et al. 2021. Analysis of long-distance heavy rainfall caused by typhoon Mangosteen (2018) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(3): 573−587. doi:10.3878/j.issn.1006-9895.2009.20126 [11] Feng L, Liu X T, Xiao H, et al. 2021. Characteristics of raindrop size distribution in typhoon Nida (2016) before and after landfall in southern China from 2D video disdrometer data [J]. Adv. Meteor., 2021: 9349738. doi: 10.1155/2021/9349738 [12] Friedrich K, Kalina E A, Masters F J, et al. 2013. Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2 [J]. Mon. Wea. Rev., 141(4): 1182−1203. doi: 10.1175/mwr-d-12-00116.1 [13] 黄兴友, 印佳楠, 马雷, 等. 2019. 南京地区雨滴谱参数的详细统计分析及其在天气雷达探测中的应用 [J]. 大气科学, 43(3): 691−704. doi: 10.3878/j.issn.1006-9895.1805.18113Huang Xingyou, Yin Jia’ nan, Ma Lei, et al. 2019. Comprehensive statistical analysis of rain drop size distribution parameters and their application to weather radar measurement in Nanjing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(3): 691−704. doi: 10.3878/j.issn.1006-9895.1805.18113 [14] 贾星灿, 马新成, 毕凯, 等. 2018. 北京冬季降水粒子谱及其下落速度的分布特征 [J]. 气象学报, 76(1): 148−159. doi: 10.11676/qxxb2017.085Jia Xingcan, Ma Xinchen, Bi Kai, et al. 2018. Distributions of particle size and fall velocities of winter precipitation in Beijing [J]. Acta Meteor. Sinica (in Chinese), 76(1): 148−159. doi: 10.11676/qxxb2017.085 [15] Lu X Q, Yu H, Ying M, et al. 2021. Western North Pacific tropical cyclone database created by the China Meteorological Administration [J]. Adv. Atmos. Sci., 38(4): 690−699. doi: 10.1007/s00376-020-0211-7 [16] 李侠丽, 潘先洁, 童应祥, 等. 2019. 两次强降水过程雨滴谱特征及差异 [J]. 气象科技, 47(2): 322−328. doi: 10.19517/j.1671-6345.20180132Li Xiali, Pan Xianjie, Tong Yingxiang, et al. 2019. Raindrop spectral characteristics of two different types of heavy precipitation based on raindrop spectral data [J]. Meteor. Sci. Technol. (in Chinese), 47(2): 322−328. doi: 10.19517/j.1671-6345.20180132 [17] 林文, 林长城, 李白良, 等. 2016. 登陆台风麦德姆不同部位降水强度及谱特征 [J]. 应用气象学报, 27(2): 239−248. doi: 10.11898/1001-7313.20160212Lin Wen, Lin Changcheng, Li Bailiang, et al. 2016. Rainfall intensity and raindrop spectrum for different parts in landing typhoon Matmo [J]. J. Appl. Meteor. y Sci. (in Chinese), 27(2): 239−248. doi: 10.11898/1001-7313.20160212 [18] 卢小丹, 王黎娟, 刘国忠, 等. 2017. 两个不同季节台风引发广西特大暴雨的水汽和螺旋度对比分析 [J]. 热带气象学报, 33(3): 375−385. doi: 10.16032/j.issn.1004-4965.2017.03.009Lu Xiaodan, Wang Lijuan, Liu Guozhong, et al. 2017. Comparative analysis of moisture and helicity during extraordinary storms caused by two typhoons in different seasons [J]. J. Trop. Meteor. (in Chinese), 33(3): 375−385. doi: 10.16032/j.issn.1004-4965.2017.03.009 [19] 吕童. 2018. 登陆台风雨滴谱特征观测研究 [D]. 南京大学硕士学位论文. Lyu Tong. 2018. Observational study of the characteristics of raindrop size distribution of landfalling typhoons [D]. M. S. thesis (in Chinese), Nanjing University. [20] Merceret F J. 1974. On the size distribution of raindrops in hurricane Ginger [J]. Mon. Wea. Rev., 102(10): 714−716. doi: 10.1175/1520-0493(1974)102<0714:otsdor>2.0.co;2 [21] 庞琦烨, 平凡, 沈新勇, 等. 2019. 不同微物理方案对台风“彩虹”(2015)降水影响的比较研究 [J]. 大气科学, 43(1): 202−220. doi: 10.3878/j.issn.1006-9895.1804.17291Pang Qiye, Ping Fan, Shen Xinyong, et al. 2019. A comparative study of effects of different microphysics schemes on precipitation simulation for typhoon Mujigae (2015) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(1): 202−220. doi: 10.3878/j.issn.1006-9895.1804.17291 [22] 覃卫坚, 李栋梁, 雷雪梅, 等. 2012. 广西暴雨非均匀性分布特征研究 [J]. 热带气象学报, 28(2): 258−264. doi: 10.3969/j.issn.1004-4965.2012.02.014Qin Weijian, Li Dongliang, Lei Xuemei, et al. 2012. Analysis on inner-annual inhomogeneity of rainstorm events in Guangxi [J]. J. Trop. Meteor. (in Chinese), 28(2): 258−264. doi: 10.3969/j.issn.1004-4965.2012.02.014 [23] Seela B K, Janapati J, Lin P L, et al. 2018. Raindrop size distribution characteristics of summer and winter season rainfall over North Taiwan [J]. J. Geophys. Res., 123(20): 11602−11624. doi: 10.1029/2018jd028307 [24] 申高航, 高安春, 李君. 2020. 台风“利奇马”不同强降水中心的雨滴谱特征分析 [J]. 气象科学, 40(1): 106−113. doi: 10.3969/2019jms.0064Shen Gaohang, Gao Anchun, Li Jun. 2020. Analysis of the characteristics of raindrop spectrum in different heavy precipitation centers caused by typhoon “Lekima” [J]. J. Meteor. Sci. (in Chinese), 40(1): 106−113. doi: 10.3969/2019jms.0064 [25] Wang H, Wang W Q, Wang J, et al. 2021. Rainfall microphysical properties of landfalling typhoon Yagi (201814) based on the observations of micro rain radar and cloud radar in Shandong, China [J]. Adv. Atmos. Sci., 38(6): 994−1011. doi: 10.1007/s00376-021-0062-x [26] Wen L, Zhao K, Chen G, et al. 2018. Drop size distribution characteristics of seven typhoons in China [J]. J. Geophys. Res., 123(12): 6529−6548. doi: 10.1029/2017jd027950 [27] 伍红雨, 杜尧东, 秦鹏. 2011. 华南暴雨的气候特征及变化 [J]. 气象, 37(10): 1262−1269. doi: 10.7519/j.issn.1000-0526.2011.10.009Wu Hongyu, Du Yaodong, Qin Peng. 2011. Climate Characteristics and variation of rainstorm in South China [J]. Meteor. Mon. (in Chinese), 37(10): 1262−1269. doi: 10.7519/j.issn.1000-0526.2011.10.009 [28] 谢媛, 陈钟荣, 戴建华, 等. 2015. 上海地区几类强降水雨滴谱特征分析 [J]. 气象科学, 35(3): 353−361. doi: 10.3969/2014jms.0046Xie Yuan, Chen Zhongrong, Dai Jianhua, et al. 2015. Analysis on raindrop spectrum in four types of precipitation in Shanghai [J]. J. Meteor. Sci. (in Chinese), 35(3): 353−361. doi: 10.3969/2014jms.0046 [29] 薛一迪, 崔晓鹏. 2020. “威马逊”(1409)强降水物理过程模拟诊断研究 [J]. 大气科学, 44(6): 1320–1336.Xue Yidi, Cui Xiaopeng. 2020. Diagnostic and numerical study on physical process of strong rainfall associated with Rammasun (1409) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1320−1336. doi:10.3878/j.issn.1006-9895.2003.19224 [30] Ying M, Zhang W, Yu H, et al. 2014. An overview of the China Meteorological Administration tropical cyclone database [J]. J. Atmos. Oceanic Technol., 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1 [31] 杨舒楠, 端义宏. 2020. 台风温比亚(1818)降水及环境场极端性分析 [J]. 应用气象学报, 31(3): 290−302. doi: 10.11898/1001-7313.20200304Yang Shu’ nan, Duan Yihong. 2020. Extremity analysis on the precipitation and environmental field of typhoon Rumbia in 2018 [J]. J. Appl. Meteor. Sci. (in Chinese), 31(3): 290−302. doi: 10.11898/1001-7313.20200304 [32] 姚晨, 娄珊珊, 叶金印. 2019. 冷空气影响台风暴雨的中尺度分析及数值模拟 [J]. 暴雨灾害, 38(3): 204−211. doi: 10.3969/j.issn.1004-9045.2019.03.002Yao Chen, Lou Shanshan, Ye Jinyin. 2019. Mesoscale analysis and numerical simulation of a typhoon rainstrom event affected by cold air [J]. Torrential Rain Disasters (in Chinese), 38(3): 204−211. doi: 10.3969/j.issn.1004-9045.2019.03.002 [33] Zagrodnik J P, McMurdie L, Conrick R. 2021. Microphysical enhancement processes within stratiform precipitation on the barrier and sub-barrier scale of the Olympic mountains [J]. Mon. Wea. Rev., 149(2): 503−520. doi: 10.1175/mwr-d-20-0164.1 [34] 曾佩芳, 薛宇峰, 梁梅, 等. 2021. 台风“韦帕”的非对称结构特征及其登陆异常的成因分析 [J]. 气象研究与应用, 42(1): 118−121. doi: 10.19849/j.cnki.CN45-1356/P.2021.1.21Zeng Peifang, Xue Yufeng, Liang Mei, et al. 2021. Asymmetric structural characteristics of Typhoon Wipha and analysis of its landing anomaly [J]. J. Meteor. Res. Appl. (in Chinese), 42(1): 118−121. doi: 10.19849/j.cnki.CN45-1356/P.2021.1.21 [35] 张丰伟, 张逸轩, 韩树浦, 等. 2019. 2016年5月6日重庆万盛短时强降水雨滴谱特征分析 [J]. 沙漠与绿洲气象, 13(4): 46−51. doi: 10.12057/j.issn.1002-0799.2019.04.007Zhang Fengwei, Zhang Yixuan, Han Shupu, et al. 2019. Raindrop spectrum characteristics during a short-time strong rainfall on 6 May 2015 in Wansheng of Chongqing [J]. Desert Oasis Meteor. (in Chinese), 13(4): 46−51. doi: 10.12057/j.issn.1002-0799.2019.04.007 [36] 郑林晔, 谌芸, 肖天贵. 2020. 台风“玛莉亚”(201808)内核和外围螺旋雨带强降水成因初探 [J]. 成都信息工程大学学报, 35(6): 653−662. doi: 10.16836/j.cnki.jcuit.2020.06.012Zheng Linye, Chen Yun, Xiao Tiangui. 2020. Preliminary study on the causes of heavy precipitation in the main core and spiral rainband belt of typhoon Maria (201808) [J]. J. Chengdu Univ. Inf. Technol. (in Chinese), 35(6): 653−662. doi: 10.16836/j.cnki.jcuit.2020.06.012 [37] Zheng H P, Zhang Y, Zhang L F, et al. 2021. Precipitation microphysical processes in the inner rainband of tropical cyclone Kajiki (2019) over the South China Sea revealed by Polarimetric radar [J]. Adv. Atmos. Sci., 38(1): 65−80. doi: 10.1007/s00376-020-0179-3 [38] 朱红芳, 王东勇, 杨祖祥, 等. 2020. “海葵”台风(1211号)暴雨雨滴谱特征分析 [J]. 暴雨灾害, 39(2): 167−175. doi: 10.3969/j.issn.1004-9045.2020.02.007Zhu Hongfang, Wang Dongyong, Yang Zuxiang, et al. 2020. Analysis of raindrop spectrum characteristics for a heavy rain event caused by typhoon Haikui (No. 1211) in Anhui [J]. Torrential Rain Disasters (in Chinese), 39(2): 167−175. doi: 10.3969/j.issn.1004-9045.2020.02.007 -