高级检索
段安民, 张萍. 2022. 青藏高原大气热源年际变率及其驱动因子[J]. 大气科学, 46(2): 455−472. doi: 10.3878/j.issn.1006-9895.2201.21126
引用本文: 段安民, 张萍. 2022. 青藏高原大气热源年际变率及其驱动因子[J]. 大气科学, 46(2): 455−472. doi: 10.3878/j.issn.1006-9895.2201.21126
DUAN Anmin, ZHANG Ping. 2022. Interannual Variability of Atmospheric Heat Source over the Tibetan Plateau and Its Driving Factors [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 455−472. doi: 10.3878/j.issn.1006-9895.2201.21126
Citation: DUAN Anmin, ZHANG Ping. 2022. Interannual Variability of Atmospheric Heat Source over the Tibetan Plateau and Its Driving Factors [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 455−472. doi: 10.3878/j.issn.1006-9895.2201.21126

青藏高原大气热源年际变率及其驱动因子

Interannual Variability of Atmospheric Heat Source over the Tibetan Plateau and Its Driving Factors

  • 摘要: 青藏高原(以下简称高原)大气热源对亚洲夏季风爆发、演变、推进,乃至全球气候系统都有重要影响,因此近年来高原大气热源变异机理也日益受到关注。本文在回顾已有关于不同季节高原热源变异原因的研究基础上,利用1980~2018年日本气象厅再分析数据JRA55(Japanese 55-year Reanalysis),对逐月高原大气总热源的年际变率进行分类,并进一步探究了影响不同类别高原大气总热源的异常大尺度环流系统及海温驱动因子。除了传统上受关注的“冬季型”和“夏季型”以外,本文还提出了“早春型”和“过渡型”两种高原大气热源变率模态。总体而言,高原大气总热源年际变率以降水引起的凝结潜热异常为主,其中“冬季型”及“早春型”高原大气热源异常中心位于高原西部,主要受到中高纬遥相关波列的影响。此外,“冬季型”还受到厄尔尼诺—南方涛动(El Niño-Southern Oscillation, ENSO)及印度洋偶极子(Indian Ocean Dipole, IOD)的影响。“夏季型”高原大气热源呈东西偶极型反相变化,最大异常中心位于高原东南部,主要受北大西洋涛动(North Atlantic Oscillation, NAO)的影响;“过渡型”高原大气热源呈南北偶极型反相变化,受热带太平洋—印度洋海表温度异常的共同影响。因此,不同背景环流下高原热源年际变率的驱动因子存在明显差异。

     

    Abstract: The atmospheric heat sources over the Tibetan Plateau (TP) play a significant role in the outbreak, evolution, advancement of the Asian summer monsoon, and the global climate system. Therefore, the variation mechanism of the TP atmospheric heat source has attracted increasing attention in recent years. This study reviewed the variation mechanism of the atmospheric heat sources over the TP in different seasons. Besides, the authors classified the interannual variability of monthly total atmospheric heat source over TP using the JRA55 (Japanese 55-year Reanalysis) dataset from 1980 to 2018. Further, the authors explored the anomalous large-scale circulation systems and SST (Sea Surface Temperature) driving factors affecting different total atmospheric heat sources over the TP. In addition to the traditional “winter type” and “summer type” interannual variability modes of the TP atmospheric heat source, “early spring type” and “transition type” are also proposed in this study. Generally, the interannual variability of the total atmospheric heat source over TP is caused by the latent heat of condensation induced by precipitation anomaly. The “winter type” and “early spring type” anomalies are primarily concentrated in the western TP and are influenced by the teleconnection wave train at middle and high latitudes. The “winter type” is also affected by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The “summer type” atmospheric heat source anomaly over TP is characterized by a dipole mode with an east–west inverse distribution, with the largest center of the anomaly appearing in the southeastern TP, which is primarily affected by the North Atlantic Oscillation (NAO). The “transition type” atmospheric heat source anomaly over TP is characterized by a dipole mode with a north–south inverse distribution, jointly influenced by the sea surface temperature anomaly in the tropical Pacific Ocean and the Indian Ocean. The driving factors of the interannual variability of the total atmospheric heat source over the TP are shown to vary remarkably depending on the background atmospheric circulation.

     

/

返回文章
返回