高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国东部气溶胶在天气尺度上的辐射强迫和对地面气温的影响

廖礼 漏嗣佳 符瑜 常文渊 廖宏

廖礼, 漏嗣佳, 符瑜, 常文渊, 廖宏. 中国东部气溶胶在天气尺度上的辐射强迫和对地面气温的影响[J]. 大气科学, 2015, 39(1): 68-82. doi: 10.3878/j.issn.1006-9895.1402.13302
引用本文: 廖礼, 漏嗣佳, 符瑜, 常文渊, 廖宏. 中国东部气溶胶在天气尺度上的辐射强迫和对地面气温的影响[J]. 大气科学, 2015, 39(1): 68-82. doi: 10.3878/j.issn.1006-9895.1402.13302
LIAO Li, LOU Sijia, FU Yu, CHANG Wenyuan, LIAO Hong. Radiative Forcing of Aerosols and Its Impact on Surface Air Temperature on Synoptic Scale in Eastern China[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 68-82. doi: 10.3878/j.issn.1006-9895.1402.13302
Citation: LIAO Li, LOU Sijia, FU Yu, CHANG Wenyuan, LIAO Hong. Radiative Forcing of Aerosols and Its Impact on Surface Air Temperature on Synoptic Scale in Eastern China[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 68-82. doi: 10.3878/j.issn.1006-9895.1402.13302

中国东部气溶胶在天气尺度上的辐射强迫和对地面气温的影响

doi: 10.3878/j.issn.1006-9895.1402.13302
基金项目: 国家重点基础研究发展计划(973计划)项目2014CB441200

Radiative Forcing of Aerosols and Its Impact on Surface Air Temperature on Synoptic Scale in Eastern China

  • 摘要: 本文应用WRF-Chem(Weather Research and Forecasting—Chemistry)模式研究中国东部地区气溶胶及其部分组分(硫酸盐、硝酸盐和黑碳气溶胶)在天气尺度下的辐射强迫和对地面气温的影响。5个无明显降水时间段(2006年8月23~25日、2008年11月10~12日、2008年12月16~18日、2009年1月15~17日和2009年4月27~29日)的模拟显示,气溶胶浓度呈现显著的白天低,夜间高的日变化特征,且北方区域(29.8°~42.6°N,110.2°~120.3°E)平均PM2.5近地面浓度(40~80 μg m-3)高于南方区域(22.3°~29.9°N,109.7°~120.2°E,30~47 μg m-3)。气溶胶对地面2 m温度(地面气温)有明显的降温效果,在早上08:00(北京时,下同)和下午17:00左右最为显著,最高可降低约0.2~1 K,同时气溶胶的参与改善了模式对地面气温的模拟。本文还通过对2006年8月23~25日一次个例的模拟,定量分析了气溶胶及其部分组分(硫酸盐、硝酸盐和黑碳气溶胶)的总天气效应(直接效应+间接效应)、直接效应和间接效应分别对到达地面的短波辐射和地面气温的影响。北方区域平均气溶胶直接效应所造成的短波辐射强迫要高于南方区域,分别为-11.3 W m-2和-5.8 W m-2,导致地面气温分别降低了0.074 K和0.039 K。南方区域平均气溶胶间接效应所产的短波辐射强迫高于北方区域,分别为-14.4 W m-2和-12.4 W m-2,引起的地面气温的改变分别为-0.094 K和-0.035 K。对于气溶胶组分,硫酸盐气溶胶的直接效应和间接效应的作用相当,其总效应在北方和南方区域平均短波辐射强迫分别为-7.0 W m-2和-10.5 W m-2,对地面气温的影响为-0.062 K和-0.074 K,而硝酸盐气溶胶的作用略小。黑碳气溶胶使得北方和南方区域平均到达地表的太阳短波辐射分别减少了6.5 W m-2和5.8 W m-2,而地表气温则分别增加了0.053 K和0.017 K,相比于间接效应,黑碳气溶胶的直接效应的影响更加显著。
  • [1] Ackerman A S, Toon O B, Stevens D E, et al. 2000. Reduction of tropical cloudiness by soot [J]. Science, 288 (5468): 1042-1047.
    [2] Bond T, Doherty S, Fahey D, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment [J]. J. Geophys. Res., 118 (11): 5380-5552.
    [3] 蔡子颖, 韩素芹, 黄鹤, 等. 2011. 天津夏季黑碳气溶胶及其吸收特性的观测研究 [J]. 中国环境科学, 31 (5): 719-723. Cai Ziying, Han Suqin, Huang He, et al. 2011. Observational study on black carbon aerosols and their absorption properties in summer in Tianjin [J]. China Environmental Science (in Chinese), 31 (5): 719-723.
    [4] Chapman E G, Gustafson W I, Easter R C, et al. 2009. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources [J]. Atmos. Chem. Phys., 9 (3): 945-964.
    [5] Chen F, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity [J]. Mon. Wea. Rev., 129 (4): 569-585.
    [6] Ek M B, Mitchell K E, Lin Y, et al. 2003. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model [J]. J. Geophys. Res., 108 (D22), doi: 10.1029/2002JD003296.
    [7] Fahey K M, Pandis S N. 2001. Optimizing model performance: Variable size resolution in cloud chemistry modeling [J]. Atmos. Environ., 35 (26): 4471-4478.
    [8] Fast J D, Gustafson W I Jr, Easter R C, et al. 2006. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model [J]. J. Geophys. Res., 111 (D21), doi: 10.1029/2005JD006721.
    [9] Giorgi F, Bi X Q, Qian Y. 2002. Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study [J]. J. Geophys. Res., 107 (D20), doi: 10.1029/2001JD001066.
    [10] Grell G A, Dévényi D. 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques [J]. Geophys. Res. Lett., 29 (14): 38-1-38-4.
    [11] Grell G A, Peckham S E, Schmitz R, et al. 2005. Fully coupled “online” chemistry within the WRF model [J]. Atmos. Environ., 39 (37): 6957-6975.
    [12] Guenther A, Zimmerman P, Wildermuth M. 1994. Natural volatile organic compound emission rate estimates for US woodland landscapes [J]. Atmos. Environ., 28 (6): 1197-1210.
    [13] Guenther A B, Zimmerman P R, Harley P C, et al. 1993. Isoprene and monoterpene emission rate variability-model evaluations and sensitivity analyses [J]. J. Geophys. Res.-Atmospheres, 98 (D7): 12609-12617.
    [14] Gustafson W I, Chapman E G, Ghan S J, et al. 2007. Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004 [J]. Geophys. Res. Lett., 34 (19), doi: 10.1029/2007GL030021.
    [15] Highwood E J, Kinnersley R P. 2006. When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health [J]. Environ. Inter., 32 (4): 560-566.
    [16] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134 (9): 2318-2341.
    [17] Hou B, Zhuang G S, Zhang R, et al. 2011. The implication of carbonaceous aerosol to the formation of haze: Revealed from the characteristics and sources of OC/EC over a mega-city in China [J]. J. Hazard. Mater., 190 (1-3): 529-536.
    [18] IPCC. 2007. The Physical Science Basis of Climate Change: Changes in Atmospheric Constituents and in Radiative Forcing [M]. New York: Cambridge University Press.
    [19] Jacobson M Z. 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols [J]. Nature, 409 (6821): 695-697. Jia X C, Guo X L. 2012. Impacts of secondary aerosols on a persistent fog event in northern China [J]. Atmos. Oceanic Sci. Lett., 5 (5): 401-407.
    [20] Kristjánsson J E. 2002. Studies of the aerosol indirect effect from sulfate and black carbon aerosols [J]. J. Geophys. Res., 107 (D15), doi: 10.1029/2001JD000887.
    [21] Li S, Wang T J, Zhuang B L, et al. 2009. Indirect radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China [J]. Adv. Atmos. Sci., 26 (3): 543-552.
    [22] 李杨, 曹军骥, 张小曳, 等. 2005. 2003 年秋季西安大气中黑碳气溶胶的演化特征及其来源解析 [J]. 气候与环境研究, 10 (2): 229-237. Li Yang, Cao Junji, Zhang Xiaoye, et al. 2005. The variability and source apportionment of black carbon aerosol in Xi'an atmosphere during the autumn of 2003 [J]. Climatic and Environmental Research (in Chinese), 10(2): 229-237.
    [23] Liao H, Seinfeld J H. 1998. Effect of clouds on direct aerosol radiative forcing of climate [J]. J. Geophys. Res., 103 (D4): 3781-3788.
    [24] Liao H, Seinfeld J H, Adams P J, et al. 2004. Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model [J]. J. Geophys. Res., 109 (D24), doi: 10.1029/2003JD004456.
    [25] Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model [J]. J. Climate Appl. Meteor., 22 (6): 1065-1092.
    [26] Matsui H, Koike M, Kondo Y, et al. 2009. Spatial and temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source apportionment [J]. J. Geophys. Res., 114, doi: 10.1029/2008JD010906.
    [27] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave [J]. J. Geophys. Res., 102 (D14): 16663-16682.
    [28] Morin S, Sander R, Savarino J. 2011. Simulation of the diurnal variations of the oxygen isotope anomaly (△17O) of reactive atmospheric species [J]. Atmos. Chem. Phys., 11 (8): 3653-3671.
    [29] Pérez C, Nickovic S, Pejanovic G, et al. 2006. Interactive dust-radiation modeling: A step to improve weather forecasts [J]. J. Geophys. Res., 111 (D16), doi: 10.1029/2005JD006717.
    [30] Rodwell M J, Jung T. 2008. Understanding the local and global impacts of model physics changes: An aerosol example [J]. Quart. J. Roy. Meteor. Soc., 134 (635): 1479-1497.
    [31] Takemura T, Nozawa T, Emori S, et al. 2005. Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model [J]. J. Geophys. Res., 110 (D2), doi: 10.1029/2004JD005029.
    [32] Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram. [J]. J. Geophys. Res., 106 (D7): 7183-7192.
    [33] Wang C E. 2004. A modeling study on the climate impacts of black carbon aerosols [J]. J. Geophys. Res., 109 (D3), doi: 10.1029/2003JD004084.
    [34] Wang Y, Che H Z, Ma J Z, et al. 2009. Aerosol radiative forcing under clear, hazy, foggy, and dusty weather conditions over Beijing, China [J]. Geophys. Res. Lett., 36, doi: 10.1029/2009GL037181.
    [35] Wild O, Zhu X, Prather M J. 2000. Fast-j: Accurate simulation of in- and below-cloud photolysis in tropospheric chemical models [J]. J. Atmos. Chem., 37 (3): 245-282.
    [36] Wu Q Z, Wang Z F, Gbaguidi A, et al. 2011. A numerical study of contributions to air pollution in Beijing during CAREBeijing-2006 [J]. Atmos. Chem. Phys., 11 (12): 5997-6011.
    [37] Xu Y, Gao X J, Shen Y, et al. 2009. A daily temperature dataset over China and its application in validating a RCM simulation [J]. Adv. Atmos. Sci., 26 (4): 763-772.
    [38] Zaveri R A, Peters L K. 1999. A new lumped structure photochemical mechanism for large-scale applications [J]. J. Geophys. Res., 104 (D23): 30387-30415.
    [39] Zaveri R A, Easter R C, Fast J D, et al. 2008. Model for simulating aerosol interactions and chemistry (MOSAIC) [J]. J. Geophys. Res., 113 (D13), doi: 10.1029/2007JD008782.
    [40] Zhang T, Cao J J, Tie X X, et al. 2011. Water-soluble ions in atmospheric aerosols measured in Xi'an, China: Seasonal variations and sources [J]. Atmos. Res., 102 (1-2): 110-119.
    [41] Zhang Y. 2008. Online-coupled meteorology and chemistry models: History, current status, and outlook [J]. Atmos. Chem. Phys., 8 (11): 2895-2932.
    [42] Zhang Y, Liao H, Zhu K F, et al. 2009. Role of black carbon-induced changes in snow albedo in predictions of temperature and precipitation during a snowstorm [J]. Atmos. Oceanic Sci. Lett., 2 (4): 230-236.
    [43] Zhang Y, Wen X Y, Jang C J. 2010a. Simulating chemistry-aerosol-cloud- radiation-climate feedbacks over the continental U. S. using the online-coupled Weather Research Forecasting Model with chemistry (WRF/Chem) [J]. Atmos. Environ., 44 (29): 3568-3582.
    [44] Zhang Y, Pan Y, Wang K, et al. 2010b. WRF/Chem-MADRID: Incorporation of an aerosol module into WRF/Chem and its initial application to the TexAQS2000 episode [J]. J. Geophys. Res., 115 (D18), doi: 10.1029/2009JD013443.
  • 加载中
计量
  • 文章访问数:  4263
  • HTML全文浏览量:  31
  • PDF下载量:  3574
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-06
  • 修回日期:  2014-02-17

目录

    /

    返回文章
    返回