高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边界层对流对示踪物抬升和传输影响的大涡模拟研究

王蓉 黄倩 田文寿 张强 张健恺 桑文军

王蓉, 黄倩, 田文寿, 张强, 张健恺, 桑文军. 边界层对流对示踪物抬升和传输影响的大涡模拟研究[J]. 大气科学, 2015, 39(4): 731-746. doi: 10.3878/j.issn.1006-9895.1502.14155
引用本文: 王蓉, 黄倩, 田文寿, 张强, 张健恺, 桑文军. 边界层对流对示踪物抬升和传输影响的大涡模拟研究[J]. 大气科学, 2015, 39(4): 731-746. doi: 10.3878/j.issn.1006-9895.1502.14155
WANG Rong, HUANG Qian, TIAN Wenshou, ZHANG Qiang, ZHANG Jiankai, SANG Wenjun. Study of a Large Eddy Simulation of the Effects of Boundary Layer Convection Tracer Uplift and Transmission[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(4): 731-746. doi: 10.3878/j.issn.1006-9895.1502.14155
Citation: WANG Rong, HUANG Qian, TIAN Wenshou, ZHANG Qiang, ZHANG Jiankai, SANG Wenjun. Study of a Large Eddy Simulation of the Effects of Boundary Layer Convection Tracer Uplift and Transmission[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(4): 731-746. doi: 10.3878/j.issn.1006-9895.1502.14155

边界层对流对示踪物抬升和传输影响的大涡模拟研究

doi: 10.3878/j.issn.1006-9895.1502.14155
基金项目: 国家自然科学基金项目41275006、41225018、41475095

Study of a Large Eddy Simulation of the Effects of Boundary Layer Convection Tracer Uplift and Transmission

  • 摘要: 利用"西北干旱区陆气相互作用野外观测实验"加密观测期间敦煌站的实测资料以及大涡模式, 通过一系列改变地表热通量和风切变的敏感性数值试验, 分析了地表热通量和风切变对边界层对流的强度、形式, 以及对对流边界层结构和发展的影响。模拟结果显示风切变一定, 增大地表热通量时, 由于近地层湍流运动增强, 向上输送的热量也较多, 使对流边界层变暖增厚, 而且边界层对流的强度明显增强, 对流泡发展的高度也较高。当地表热通量一定, 增大风切变时, 由于风切变使夹卷作用增强, 将逆温层中的暖空气向下卷入混合层中, 使对流边界层增暖增厚, 但是对流泡容易破碎, 对流的强度也较弱。另外通过在模式近地层释放绝对浓度为100的被动示踪物方法, 用最小二乘法定量地分析了地表热通量和风切变分别与示踪物抬升效率和传输高度的关系。分析结果表明, 风切变小于10.5×10-3 s-1时, 增大地表热通量加强了上层动量的下传, 使示踪物的抬升效率也线性增大;地表热通量小于462.5 W m-2时, 增大风切变减弱了边界层对流的强度, 从而使示踪物的抬升效率减弱。当风切变一定时, 示踪物的平均传输高度随地表热通量增加而增大, 而地表热通量一定, 只有风切变大于临界值时, 示踪物平均传输高度才随风切变的增加而增大, 而临界风速的大小由地表热通量决定。
  • [1] Bozlaker A, Prospero J M, Fraser M P, et al. 2013. Quantifying the contribution of long-range Saharan dust transport on particulate matter concentrations in Houston, texas, using detailed elemental analysis [J]. Environ. Sci. Technol., 47 (18): 10179-10187.
    [2] Cakmur R V, Miller R L, Torres O. 2004. Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model [J]. J. Geophys. Res., 109 (D7), doi: 10.1029/2003JD004067.
    [3] Etling D, Brown R A. 1993. Roll vortices in the planetary boundary layer: A review [J]. Bound.-Layer Meteor., 65 (3): 215-248.
    [4] Field P R, Möhler O, Connolly P, et al. 2006. Some ice nucleation characteristics of Asian and Saharan desert dust [J]. Atmospheric Chemistry and Physics, 6 (10): 2991-3006.
    [5] Gillette D. 1978. A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production [J]. Atmos. Environ. (1967), 12 (8): 1735-1743.
    [6] Gamo M. 1996. Thickness of the dry convection and large-scale subsidence above deserts [J]. Bound.-Layer Meteor., 79 (3): 265-278.
    [7] Gray M E B, Petch J, Derbyshire S H, et al. 2001. Version 2.3 of the Met. Office large eddy model [R]. Met Office (APR) Turbulence and Diffusion Rep, 276pp.
    [8] Haywood J M, Allan R P, Culverwell I, et al. 2005. Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003? [J]. J. Geophys. Res., 110 (D5), doi: 10.1029/2004JD005232.
    [9] 黄倩, 王蓉, 田文寿, 等. 2014. 风切变对边界层对流影响的大涡模拟研究 [J]. 气象学报, 72 (1): 100-115. Huang Qian, Wang Rong, Tian Wenshou, et al. 2014. Study of the impacts of wind shear on boundary layer convection based on the large eddy simulation [J]. Acta Meteorologica Sinica (in Chinese), 72 (1): 100-115.
    [10] Huang Q, Marsham J H, Parker D J, et al. 2010. Simulations of the effects of surface heat flux anomalies on stratification, convective growth, and vertical transport within the Saharan boundary layer [J]. J. Geophys. Res., 115 (D5), doi: 10.1029/2009JD012689.
    [11] IPCC. 2007. Fourth Assessment Report, Working Group I Report: The Physical Science Basis, Intergovernment Panel on Climate Change, download at http://.ipcc.ch/report/ar4 [2015-3-24]
    [12] Iwasaka Y, Shibata T, Nagatani T, et al. 2003. Large depolarization ratio of free tropospheric aerosols over the Taklamakan desert revealed by Lidar measurements: Possible diffusion and transport of dust particles [J]. J. Geophys. Res., 108 (D23), doi: 10.1029/2002JD003267.
    [13] Knippertz P, Ansmann A, Althausen D, et al. 2009. Dust mobilization and transport in the northern Sahara during SAMUM 2006-A meteorological overview [J]. Tellus B, 61 (1): 12-31.
    [14] Kim H M, Kay J K, Yang E G, et al. 2013. Statistical adjoint sensitivity distributions of meteorological forecast errors of Asian dust transport events in Korea [J]. Tellus B, 65: 20554.
    [15] Kim S W, Park S U, Moeng C H. 2003. Entrainment processes in the convective boundary layer with varying wind shear [J]. Bound.-Layer Meteor., 108 (2): 221-245.
    [16] Koch J, Renno N O. 2005. The role of convective plumes and vortices on the global aerosol budget [J]. Geophys. Res. Lett., 32 (18), doi: 10.1029/2005GL023420.
    [17] Li X L, Zhang H S. 2014. Soil moisture effects on sand saltation and dust emission observed over the Horqin sandy land area in China [J]. J. Meteor. Res., 28 (3): 444-452.
    [18] 李耀辉, 张书余. 2007. 我国沙尘暴特征及其与干旱关系的研究进展 [J]. 地球科学进展, 22 (11): 1169-1176. Li Yaohui, Zhang Shuyu. 2007. Review of the research on the relationship between sand-dust storm and arid in China [J]. Advances in Earth Science (in Chinese), 22 (11): 1169-1176.
    [19] Moeng C H, Sullivan P P. 1994. A comparison of shear- and buoyancy-driven planetary boundary layer flows [J]. J. Atmos. Sci., 51 (7): 999-1022.
    [20] Mahowald N M, Baker A R, Bergametti G, et al. 2005. Atmospheric global dust cycle and iron inputs to the ocean [J]. Global Biogeochemical Cycles, 19 (4), doi: 10.1029/2004GB002402.
    [21] Marsham J H, Parker D J, Grams C M, et al. 2008a. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara [J]. Atmospheric Chemistry and Physics, 8 (23): 6979-6993.
    [22] Marsham J H, Parker D J, Grams C M, et al. 2008b. Uplift of Saharan dust south of the intertropical discontinuity [J]. J. Geophys. Res., 113 (D21), doi: 10.1029/2008JD009844.
    [23] Marsham J H, Knippertz P, Dixon N S, et al. 2011. The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer [J]. Geophys. Res. Lett., 38 (16), doi: 10.1029/2011GL048368.
    [24] O'Loingsigh T, McTainsh G H, Tews E K, et al. 2014. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records [J]. Aeolian Research, 12: 29-40.
    [25] Paugam R, Paoli R, Cariolle D. 2010. Influence of vortex dynamics and atmospheric turbulence on the early evolution of a contrail [J]. Atmospheric Chemistry and Physics, 10 (8): 3933-3952.
    [26] Ramaswamy V. 2014. Influence of tropical storms in the northern Indian Ocean on dust entrainment and long-range transport [M]//Tang D L, Sui G J. Typhoon Impact and Crisis Management. Berlin Heidelberg: Springer, 149-174.
    [27] Shin H H, Hong S Y. 2013. Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions [J]. J. Atmos. Sci., 70 (10): 3248-3261.
    [28] Shao Y P. 2008. Physics and Modelling of Wind Erosion [M]. Dordrecht: Kluwer Academic Publishing, 467pp.
    [29] Takemi T. 1999. Structure and evolution of a severe squall line over the arid region in Northwest China [J]. Mon. Wea. Rev., 127 (6): 1301-1309.
    [30] Takemi T, Yasui M, Zhou J, et al. 2005. Modeling study of diurnally varying convective boundary layer and dust transport over desert regions [J]. Scientific Online Letters on the Atmosphere, 1: 157-160.
    [31] Takemi T, Yasui M, Zhou J, et al. 2006. Role of boundary layer and cumulus convection on dust emission and transport over a midlatitude desert area [J]. J. Geophys. Res., 111 (D11), doi: 10.1029/2005JD006666.
    [32] Tan S C, Shi G Y, Wang H. 2012. Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas [J]. Atmos. Environ., 46: 299-308.
    [33] Tian W, Parker D J, Kilburn C A D. 2003. Observations and numerical simulation of atmospheric cellular convection over mesoscale topography [J]. Mon. Wea. Rev., 131 (1): 222-235.
    [34] Todd M C, Bou Karam D, Cavazos C, et al. 2008. Quantifying uncertainty in estimates of mineral dust flux: An intercomparison of model performance over the Bodélé Depression, northern Chad [J]. J. Geophys. Res., 113 (D24), doi: 10.1029/2008JD010476.
    [35] Weckwerth T, Horst T, Wilson J. 1999. An observational study of the evolution of horizontal convective rolls [J]. Mon. Wea. Rev., 127 (9): 2160-2179.
    [36] Yang Y Q, Wang J Z, Niu T, et al. 2013. The variability of spring sand-dust storm frequency in Northeast Asia from 1980 to 2011 [J]. Acta Meteorologica Sinica, 27 (1): 119-127.
    [37] 张宏升, 李晓岚. 2014. 沙尘天气过程起沙特征的观测试验和参数化研究进展 [J]. 气象学报, 72 (5): 987-1000. Zhang Hongsheng, Li Xiaolan. 2014. Review of the field measurements and parameterization for dust emission during sand-dust events [J]. Acta Meteorologica Sinica (in Chinese), 72 (5): 987-1000.
    [38] 张强, 赵映东, 王胜, 等. 2007. 极端干旱荒漠区典型晴天大气热力边界层结构分析 [J]. 地球科学进展, 22 (11): 1150-1159. Zhang Qiang, Zhao Yingdong, Wang Sheng, et al. 2007. A study on atmospheric thermal boundary layer structure in extremely arid desert and Gobi region on the clear day in summer [J]. Advances in Earth Science (in Chinese), 22 (11): 1150-1159.
    [39] Zhang Qiang, Zhang Jie, Qiao Juan, et al. 2011. Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China [J]. Science China Earth Sciences, 54 (10): 1586-1594.
    [40] 赵琳娜, 孙建华, 王超, 等. 2007. 2006年春季最强沙尘暴过程的数值分析 [J]. 气候与环境研究, 12 (3): 309-319. Zhao Linna, Sun Jianhua, Wang Chao, et al. 2007. The numerical characteristics of a severe dust storm over North China in the spring of 2006 [J]. Climatic and Environmental Research (in Chinese), 12 (3): 309-319.
    [41] 赵建华, 张强, 王胜. 2011. 西北干旱区对流边界层发展的热力机制模拟研究 [J]. 气象学报, 69 (6): 1029-1037. Zhao Jianhua, Zhang Qiang, Wang Sheng. 2011. A simulative study of the thermal mechanism for development of the convective boundary layer in the arid zone of Northwest China [J]. Acta Meteorologica Sinica (in Chinese), 69 (6): 1029-1037.
    [42] 赵思雄, 孙建华. 2013. 近年来灾害天气机理和预测研究的进展 [J]. 大气科学, 37 (2): 297-312. Zhao Sixiong, Sun Jianhua. 2013. Study on mechanism and prediction of disastrous weathers during recent years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (2): 297- 312.
  • 加载中
计量
  • 文章访问数:  2699
  • HTML全文浏览量:  1
  • PDF下载量:  2871
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-27
  • 修回日期:  2015-02-05

目录

    /

    返回文章
    返回