高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北地区夏季降水日变化的时空分布特征

韩函 吴昊旻 黄安宁

韩函, 吴昊旻, 黄安宁. 华北地区夏季降水日变化的时空分布特征[J]. 大气科学, 2017, 41(2): 263-274. doi: 10.3878/j.issn.1006-9895.1610.15312
引用本文: 韩函, 吴昊旻, 黄安宁. 华北地区夏季降水日变化的时空分布特征[J]. 大气科学, 2017, 41(2): 263-274. doi: 10.3878/j.issn.1006-9895.1610.15312
Han HAN, Haomin WU, Anning HUANG. Temporal and Spatial Distributions of the Diurnal Cycle of Summer Precipitation over North China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(2): 263-274. doi: 10.3878/j.issn.1006-9895.1610.15312
Citation: Han HAN, Haomin WU, Anning HUANG. Temporal and Spatial Distributions of the Diurnal Cycle of Summer Precipitation over North China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(2): 263-274. doi: 10.3878/j.issn.1006-9895.1610.15312

华北地区夏季降水日变化的时空分布特征

doi: 10.3878/j.issn.1006-9895.1610.15312
基金项目: 

国家自然科学基金项目 41175086

详细信息
    作者简介:

    韩函, 男, 1994年出生, 硕士研究生, 主要从事应用气象和气候变化等相关研究。E-mail:hhannju@163.com

    通讯作者:

    黄安宁, E-mail:anhuang@nju.edu.cn

  • 中图分类号: P461

Temporal and Spatial Distributions of the Diurnal Cycle of Summer Precipitation over North China

Funds: 

National Natural Science Foundation of China 41175086

  • 摘要: 利用2008~2014年间全国自动站观测降水和CMORPH[CPC(Climate Prediction Center)morphing technique]卫星反演降水资料融合而成的0.1°×0.1°小时降水产品揭示了华北夏季降水的日变化特征,发现华北多数地区夏季降水量和降水频率日变化呈现出明显的双峰特征且存在明显的区域性差异。在太行山以西地区,降水量和降水频率的日峰值出现在傍晚18:00左右(北京时),规律性最强;而在太行山以东的平原和沿海地区,日峰值一般出现在上午。研究不同持续时间降水对总降水的贡献发现短时降水对傍晚的降水日峰值贡献较大,而长时降水则对凌晨的峰值影响更大。分析不同强度降水对总降水量的贡献结果表明,0.1~10 mm h-1强度降水较其它强度降水对夏季华北地区总降水量贡献更大,随着降水强度的增加降水量日变化的峰值个数增加。
  • 图  1  华北地区地形图。四个矩形区域分别表示区域R1、R2、R3和R4

    Figure  1.  Topography in North China. The rectangles indicate the 4 sub-regions R1, R2, R3 and R4

    图  2  华北夏季(a)降水量(单位:mm h−1)、(b)降水频率日峰值(颜色填充)及其出现时间(箭头;北京时)的空间分布

    Figure  2.  Spatial distribution of the summer (a) PPA (Peak Precipitation Amount; shaded; units: mm h−1) and its occurrence time (arrows; Beijing time) in a day (24 h) over North China; (b) same as in (a) but for PPF (Peak Precipitation Frequency)

    图  3  华北区域平均夏季降水量PA、降水频率PF和降水强度PI的日变化特征

    Figure  3.  Diurnal variations of summer PA (Precipitation Amount), PF (Precipitation Frequency), and PI (Precipitation Intensity) regionally averaged over North China

    图  4  华北各子区域平均夏季PA(左列)、PF(中间列)和PI(右列)的日变化特征

    Figure  4.  Diurnal variations of the summer PA (left column), PF (middle column), and PI (right column) regionally averaged over each sub-region

    图  5  华北夏季(a)短时和(b)长时持续时间降水量对总降水量贡献的空间分布

    Figure  5.  Spatial distributions of the percentage contributions of (a) short-duration PA (SPA) and (b) long-duration PA (LPA) to total precipitation amount over North China in the summer

    图  6  华北夏季(a)短时和(b)长时持续时间降水量日峰值(颜色填充)及其出现时间(箭头;北京时)的空间分布

    Figure  6.  Spatial distributions of diurnal peaks of the summer SPA and LPA (shaded) and their occurrence time (arrows; Beijing time) in a day (24 h) over North China

    图  7  华北夏季不同持续时间降水量日变化特征

    Figure  7.  Diurnal variations of the summer PA with different durations regionally averaged over North China

    图  8  华北(a-d)各子区域(R1到R4)夏季不同持续时间降水量日变化特征

    Figure  8.  Diurnal variations of the summer PA with different durations regionally averaged over (a-d) each sub-region (from R1 to R4) of North China

    图  9  华北各子区域夏季(a-d)不同等级(L1到L4)降水的降水量(单位:mm h−1)日变化特征

    Figure  9.  Diurnal variations of the summer PA (units: mm h−1) of (a-d) different precipitation categories (L1 to L4) regionally averaged over each sub-region of North China

    图  10  图 9,但为降水强度

    Figure  10.  Same as Fig. 9, but for PI

  • [1] Bhatt B C, Nakamura K. 2006. A climatological-dynamical analysis associated with precipitation around the southern part of the Himalayas[J]. J. Geophys. Res., 111 (D2):D02115, doi: 10.1029/2005JD006197.
    [2] Chakraborty A, Krishnamurti T N. 2008. Improved forecasts of the diurnal cycle in the Tropics using multiple global models. Part Ⅱ:Asian summer monsoon[J]. J. Climate, 21 (16):4045-4067, doi: 10.1175/2008JCLI2107.1.
    [3] Chen G X, Sha W M, Iwasaki T. 2009a. Diurnal variation of precipitation over southeastern China:Spatial distribution and its seasonality[J]. J. Geophys. Res., 114 (D13), doi: 10.1029/2008JD011103.
    [4] Chen G X, Sha W M, Iwasaki T. 2009b. Diurnal variation of precipitation over southeastern China:2. Impact of the diurnal monsoon variability[J]. J. Geophys. Res., 114 (D21), doi: 10.1029/2009JD012181.
    [5] Chen H M, Yu R C, Li J, et al. 2010. Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley[J]. J. Climate, 23 (4):905-917, doi:10.1175/ 2009JCLI3187. 1.
    [6] Dai A G, Wang J H. 1999. Diurnal and semidiurnal tides in global surface pressure fields[J]. J. Atmos. Sci., 56 (22):3874-3891, doi:10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO; 2.
    [7] Dai A G, Giorgi F, Trenberth K E. 1999a. Observed and model-simulated diurnal cycles of precipitation over the contiguous United States[J]. J. Geophys. Res., 104 (D6):6377-6402, doi: 10.1029/98JD02720.
    [8] Dai A G, Trenberth K E, Karl T R. 1999b. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range[J]. J. Climate, 12 (8):2451-2473, doi:10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO; 2.
    [9] Dai A G, Trenberth K E. 2004. The diurnal cycle and its depiction in the community climate system model[J]. J. Climate, 17 (5):930-951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO; 2.
    [10] Dai A G, Lin X, Hsu K L. 2007. The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low-and mid-latitudes[J]. Climate Dyn., 29 (7-8):727-744, doi: 10.1007/s00382-007-0260-y.
    [11] He H Z, Zhang F Q. 2010. Diurnal variations of warm-season precipitation over northern China[J]. Mon. Wea. Rev., 138 (4):1017-1025, doi: 10.1175/2010MWR3356.1.
    [12] Joyce R J, Janowiak J E, Arkin P A, et al. 2004. CMORPH:A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. J. Hydrometeorol., 5 (3):487-503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO; 2.
    [13] Kishtawal C M, Krishnamurti T N. 2001. Diurnal variation of summer rainfall over Taiwan and its detection using TRMM observations[J]. J. Appl. Meteor., 40 (3):331-344, doi:10.1175/1520-0450(2001)040<0331:DVOSRO>2.0.CO; 2.
    [14] Liang X Z, Li L, Dai A G, et al. 2004. Regional climate model simulation of summer precipitation diurnal cycle over the United States[J]. Geophys. Res. Lett., 31 (24), doi: 10.1029/2004GL021054.
    [15] Lin X, Randall D A, Fowler L D. 2000. Diurnal variability of the hydrologic cycle and radiative fluxes:Comparisons between observations and a GCM[J]. J. Climate, 13 (23):4159-4179, doi:10.1175/1520-0442(2000)013<4159:DVOTHC>2.0.CO; 2.
    [16] Mao J Y, Wu G X. 2012. Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data[J]. Sci. China Earth Sci., 55 (4):554-566, doi: 10.1007/s11430-011-4315-x.
    [17] Nesbitt S W, Zipser E J. 2003. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements[J]. J. Climate, 16 (10):1456-1475, doi: 10.1175/1520-0442-16.10.1456.
    [18] Oki T, Musiake K. 1994. Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia[J]. J. Appl. Meteor., 33 (12):1445-1463, doi:10.1175/1520-0450(1994)033<1445:SCOTDC>2.0.CO; 2.
    [19] 潘旸, 沈艳, 宇婧婧, 等. 2012.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验[J].气象学报, 70 (6):1381-1389. doi: 10.11676/qxxb2012.116

    Pan Yang, Shen Yan, Yu Jingjing, et al. 2012. Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique[J]. Acta Meteor. Sinica (in Chinese), 70 (6):1381-1389, doi: 10.11676/qxxb2012.116.
    [20] Qian J H. 2008. Why precipitation is mostly concentrated over islands in the Maritime Continent[J]. J. Atmos. Sci., 65 (4):1428-1441, doi: 10.1175/2007JAS2422.1.
    [21] Qian J H, Robertson A W, Moron V. 2010. Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia[J]. J. Atmos. Sci., 67 (11):3509-3524, doi: 10.1175/2010JAS3348.1.
    [22] Qian T T, Dai A G, Trenberth K E, et al. 2006. Simulation of global land surface conditions from 1948 to 2004. Part Ⅰ:Forcing data and evaluations[J]. J. Hydrometeorol., 7 (5):953-975, doi: 10.1175/JHM540.1.
    [23] Reiter E R, Tang M C. 1984. Plateau effects on diurnal circulation patterns[J]. Mon. Wea. Rev., 112 (4):638-651, doi:10.1175/1520-0493(1984) 112<0638:PEODCP>2.0.CO; 2.
    [24] Saito K, Keenan T, Holland G, et al. 2001. Numerical simulation of the diurnal evolution of Tropical Island convection over the Maritime Continent[J]. Mon. Wea. Rev., 129 (3):378-400, doi:10.1175/1520-0493(2001)129<0378:NSOTDE>2.0.CO; 2.
    [25] 沈艳, 潘旸, 宇婧婧, 等. 2013.中国区域小时降水量融合产品的质量评估[J].大气科学学报, 36 (1):37-46. doi: 10.3969/j.issn.1674-7097.2013.01.005

    Shen Yan, Pan Yang, Yu Jingjing, et al. 2013. Quality assessment of hourly merged precipitation product over China[J]. Trans. Atmos. Sci. (in Chinese), 36 (1):37-46, doi: 10.3969/j.issn.1674-7097.2013.01.005.
    [26] Shen Y, Zhao P, Pan Y, et al. 2014. A high spatiotemporal gauge-satellite merged precipitation analysis over China[J]. J. Geophys. Res., 119 (6):3063-3075, doi: 10.1002/2013JD020686.
    [27] Sorooshian S, Gao X, Hsu K, et al. 2002. Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information[J]. J. Climate, 15 (9):983-1001, doi:10.1175/1520-0442(2002)015<0983:DVOTRR>2.0.CO; 2.
    [28] Sun J H, Zhang F Q. 2012. Impacts of mountain-plains solenoid on diurnal variations of rainfalls along the Mei-yu front over the East China plains[J]. Mon. Wea. Rev., 140 (2):379-397, doi: 10.1175/MWR-D-11-00041.1.
    [29] Wallace J M. 1975. Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States[J]. Mon. Wea. Rev., 103 (5):406-419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO; 2.
    [30] Wang C C, Chen G T J, Carbone R E. 2004. A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations[J]. Mon. Wea. Rev., 132 (7):1606-1629, doi:10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO; 2.
    [31] Williams M, Houze R A. 1987. Satellite-observed characteristics of winter monsoon cloud clusters[J]. Mon. Wea. Rev, 115 (2):505-519, doi:10.1175/1520-0493(1987)115<0505:SOCOWM>2.0.CO; 2.
    [32] Wu P M, Hamada J I, Mori S, et al. 2003. Diurnal variation of precipitable water over a mountainous area of Sumatra Island[J]. J. Appl. Meteor., 42 (8):1107-1115, doi:10.1175/1520-0450(2003)042<1107:DVOPWO>2.0. CO; 2.
    [33] Yin S Q, Li W J, Chen D L, et al. 2011. Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization[J]. Adv. Atmos. Sci., 28 (4):725-734, doi: 10.1007/s00376-010-9240-y.
    [34] Yu R C, Zhou T J, Xiong A Y, et al. 2007a. Diurnal variations of summer precipitation over contiguous China[J]. Geophys. Res. Lett., 34 (1):223-234, doi: 10.1029/2006GL028129.
    [35] Yu R C, Xu Y P, Zhou T J, et al. 2007b. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J]. Geophys. Res. Lett., 34 (13), doi: 10.1029/2007GL030315:173-180.
    [36] Yu R C, Li J. 2012. Hourly rainfall changes in response to surface air temperature over eastern contiguous China[J]. J. Climate, 25 (19):6851-6861, doi: 10.1175/JCLI-D-11-00656.1.
    [37] 宇婧婧, 沈艳, 潘旸, 等. 2013.概率密度匹配法对中国区域卫星降水资料的改进[J].应用气象学报, 24 (5):544-553. doi: 10.3969/j.issn.1001-7313.2013.05.004

    Yu Jingjing, Shen Yan, Pan Yang, et al. 2013. Improvement of satellite-based precipitation estimates over China based on probability density function matching method[J]. J. Appl. Meteor. Sci. (in Chinese), 24 (5):544-553, doi: 10.3969/j.issn.1001-7313.2013.05.004.
    [38] 原韦华, 宇如聪, 傅云飞. 2014.中国东部夏季持续性降水日变化在淮河南北的差异分析[J].地球物理学报, 57 (3):752-759. doi: 10.6038/cjg20140306

    Yuan Weihua, Yu Rucong, Fu Yunfei. 2014. Study of different diurnal variations of summer long-duration rainfall between the southern and northern parts of the Huaihe River[J]. Chinese J. Geophys. (in Chinese), 57 (3):752-759, doi: 10.6038/cjg20140306.
    [39] Zhang G J. 2003. Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the U.S. southern great plains[J]. Geophys. Res. Lett., 30 (24), doi: 10.1029/2003GL018554.
    [40] 张庆云. 1999. 1880年以来华北降水及水资源的变化[J].高原气象, 18 (4):486-495. doi: 10.3321/j.issn:1000-0534.1999.04.003

    Zhang Qingyun. 1999. The variations of the precipitation and water resources in North China since 1880[J]. Plateau Meteor. (in Chinese), 18 (4):486-495, doi: 10.3321/j.issn:1000-0534.1999.04.003.
    [41] Zhou T J, Yu R C, Chen H M, et al. 2008. Summer precipitation frequency, intensity, and diurnal cycle over China:A comparison of satellite data with rain gauge observations[J]. J. Climate, 21 (16):3997-4010, doi: 10.1175/2008JCLI2028.1.
    [42] Zhuo H, Zhao P, Zhou T J. 2013. Diurnal cycle of summer rainfall in Shandong of eastern China[J]. Int. J. Climatol., 34 (3):742-750, doi: 10.1002/joc.3718.
  • 加载中
图(10)
计量
  • 文章访问数:  2434
  • HTML全文浏览量:  0
  • PDF下载量:  1748
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-26
  • 网络出版日期:  2016-10-13
  • 刊出日期:  2017-03-15

目录

    /

    返回文章
    返回