高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2014年夏季青藏高原狮泉河与林芝降水低频振荡及陆—气过程日变化特征

段丽君 段安民 胡文婷 巩远发

段丽君, 段安民, 胡文婷, 巩远发. 2014年夏季青藏高原狮泉河与林芝降水低频振荡及陆—气过程日变化特征[J]. 大气科学, 2017, 41(4): 767-783. doi: 10.3878/j.issn.1006-9895.1701.16205
引用本文: 段丽君, 段安民, 胡文婷, 巩远发. 2014年夏季青藏高原狮泉河与林芝降水低频振荡及陆—气过程日变化特征[J]. 大气科学, 2017, 41(4): 767-783. doi: 10.3878/j.issn.1006-9895.1701.16205
Lijun Duan, Anmin Duan, Wenting Hu, Yuanfa Gong. Low Frequency Oscillation of Precipitation and Daily Variation Characteristic of Air-Land Process at Shiquanhe Station and Linzhi Station in Tibetan Plateau in the Summer of 2014[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4): 767-783. doi: 10.3878/j.issn.1006-9895.1701.16205
Citation: Lijun Duan, Anmin Duan, Wenting Hu, Yuanfa Gong. Low Frequency Oscillation of Precipitation and Daily Variation Characteristic of Air-Land Process at Shiquanhe Station and Linzhi Station in Tibetan Plateau in the Summer of 2014[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4): 767-783. doi: 10.3878/j.issn.1006-9895.1701.16205

2014年夏季青藏高原狮泉河与林芝降水低频振荡及陆—气过程日变化特征

doi: 10.3878/j.issn.1006-9895.1701.16205
基金项目: 

国家重点基础研究计划 2015CB453202

国家重点基础研究计划 2014CB953902

国家自然科学基金项目 91337216

国家自然科学基金项目 41305065

详细信息
    作者简介:

    段丽君, 女, 1993年出生, 硕士研究生, 主要从事青藏高原陆气相互作用方面的研究。E-mail:duanlijun@lasg.iap.ac.cn

    通讯作者:

    段安民, E-mail:amduan@lasg.iap.ac.cn

  • 中图分类号: P432

Low Frequency Oscillation of Precipitation and Daily Variation Characteristic of Air-Land Process at Shiquanhe Station and Linzhi Station in Tibetan Plateau in the Summer of 2014

Funds: 

National Key Basic Research Program 2015CB453202

National Key Basic Research Program 2014CB953902

National Natural Science Foundation of China 91337216

National Natural Science Foundation of China 41305065

  • 摘要: 根据“第三次青藏高原大气科学试验” 2014年7、8月青藏高原西南部狮泉河站、东南部林芝站的3 m涡动相关系统原始数据和10 Hz湍流资料以及中国气象局台站观测资料、JRA-55(Japanese 55-year Reanalysis)逐日再分析资料、GPCP(Global Precipitation Climatology Project)全球降水逐日观测资料,分别讨论了这两个站在10~20天低频振荡的天气背景下其干、湿位相近地层气象要素的日变化特征以及湍流变化特征。结果表明:两站高低空环流场、水汽通量场、热源的10~20天低频分量在其干、湿位相期间的配置相反。低频地表感热和潜热的不同变化对降水的影响分别在高原西部和东部有不同表现。狮泉河站的低频振荡在纬向上自西向东传播,而林芝站的低频振荡在纬向上自东向西传播,结果表明这两个站分别存在两种不同起源的低频振荡。两站干、湿位相的近地面气象要素以及湍流通量具有明显的日变化特征,通常温度极大值出现在午后14时(北京时,下同),但狮泉河站干、湿位相的温度极大值均出现在夜间20时;由波文比可知,狮泉河站湿位相全天以潜热为主导,干位相期间,06时之前以潜热为主,06时之后以感热为主;林芝站干、湿位相均为08时之前以感热为主,08时之后以潜热为主。两站湍流平均动能与平均风速正相关,垂直动量表现为向下传输,热量和水汽表现为向上传输。
  • 图  1  2014年7~8月逐日(a)狮泉河站和(b)林芝站降水功率谱(黑色实线)分析,红色虚线为Markov红噪音谱,蓝色虚线表示通过了95%信度水平检验

    Figure  1.  Power spectrum analysis (black solid lines) of daily variation of precipitation at (a) Shiquanhe station and (b) Linzhi station from July to August of 2014. The red dashed lines represent the Markov red noise spectrum, the blue dashed lines represent values above 95% confidence level

    图  2  2014年7~8月(a)狮泉河站和(b)林芝站未滤波(黑色实线)和10~20 d滤波(红色实线)标准化的降水距平时间序列。右上角百分数为两站10~20 d振荡的方差百分比。数字1、3、5、7代表一个10~20 d波动的位相,灰色虚线表示±1标准差

    Figure  2.  Time series of normalized unfiltered (black solid lines) and the 10-20-day filtered (red solid lines) precipitation anomalies at (a) Shiquanhe station and (b) Linzhi station. The percentage variance of the 10-20-day oscillation at each station is presented on the top-right corners of (a) and (b). The numbers 1, 3, 5, and 7 indicate the phases of one 10-20-day oscillation, the gray dotted lines represent standard deviation of ±1

    图  3  10~20 d滤波的干位相和湿位相200 hPa环流场(箭头,单位:m s-1)、散度(阴影,单位:10-5 s-1):(a)狮泉河站干位相当天;(b)狮泉河站湿位相当天;(c)林芝站干位相当天;(d)林芝站湿位相当天。图a、b中的红色圆点代表狮泉河站,图c、d中的红色圆点代表林芝站

    Figure  3.  10-20-day filtered 200-hPa circulation field (arrows, units: m s-1) and divergence (shaded, units: 10-5 s-1) in dry phase and wet phase: (a) The day of dry phase at Shiquanhe station, (b) the day of wet phase at Shiquanhe station, (c) the day of dry phase at Linzhi station, (d) the day of wet phase at Linzhi station. The red dots in Figs. a and b represent Shiquanhe station, the red dots in Figs. c and d represent Linzhi station

    图  4  图 3,但为10~20 d滤波500 hPa环流场(箭头,单位:m s-1)和垂直速度(阴影,单位:Pa s-1

    Figure  4.  As in Fig. 3, but for 10-20-day filtered 500-hPa circulation field (arrows, units: m s-1) and vertical velocity (shaded, units: Pa s-1)

    图  5  图 3,但为10~20 d滤波的地面至100 hPa垂直积分的水汽通量(箭头,单位:kg m-1 s-2)和水汽通量散度(阴影,单位:10-5 kg m-2 s-2

    Figure  5.  As in Fig. 3, but for 10-20-day filtered vertically integrated water vapor fluxes (arrows, units: kg m-1 s-2) and the moisture flux divergence (shaded, units: 10-5 kg m-2 s-2) from surface to 100 hPa

    图  6  图 3,但为10~20 d滤波后的视热源分布(阴影,单位:W m-2

    Figure  6.  As in Fig. 3, but for 10-20-day filtered apparent heat source (shaded, units: W m-2)

    图  7  图 3,但为10~20 d滤波后的地面感热通量分布(阴影,单位:W m-2

    Figure  7.  As in Fig. 3, but for 10-20-day filtered surface sensible heat fluxes (shaded, units: W m-2)

    图  8  图 3,但为10~20 d滤波后的地面潜热通量分布(阴影,单位:W m-2

    Figure  8.  As in Fig. 3, but for 10-20-day filtered surface latent heat fluxes (shaded, units: W m-2)

    图  9  2014年7~8月10~20 d滤波的(a、f)地面至100 hPa积分的低频水汽通量散度(单位:10-5 kg m-2 s-2)、(b、g)200 hPa低频散度(单位:10-5 s-1)、(c、h)低频降水(单位:mm d-1)、(d、i)地面感热通量(单位:W m-2)以及(e、j)潜热通量(单位:W m-2)的时间—纬度剖面。图a、b、c、d、e为狮泉河站(沿80.05°E)的剖面,紫色虚线代表狮泉河站,两条紫色实线分别代表干、湿位相当天。图f、g、h、i、j同图a、b、c、d、e,但为林芝站(沿94.2°E)的剖面

    Figure  9.  The time-latitude cross sections of 10-20-day filtered (a, f) divergence (units: 10-5 kg m-2 s-2) of moisture fluxes vertically integrated from surface to 100 hPa, (b, g) 200-hPa low-frequency divergence (units: 10-5 s-1), (c, h) low-frequency precipitation (units: mm d-1), (d, i) surface sensible heat fluxes (units: W m-2), and (e, j) surface latent heat fluxes (units: W m-2). Figs. a, b, c, d, and e indicate the cross sections along 80.05°E at Shiquanhe station, the purple dashed line represents Shiquanhe station, the purple solid lines represent the days of dry phase and wet phase, respectively. Figs. f, g, h, i, j are the same as Figs. a, b, c, d, e, but for Linzhi station (the section along 94.2°E)

    图  10  图 9,但为时间—经度剖面。图a、b、c、d、e为狮泉河站(沿32.3°N)的剖面,图f、g、h、i、j为林芝站(沿29.4°N)的剖面

    Figure  10.  As in Fig. 9, but for time-longitude cross sections. Figs. a, b, c, d, e indicate the cross sections along 32.3°N at Shiquanhe station, Figs. f, g, h, i, j indicate the cross sections along 29.4°N at Linzhi station

    图  11  狮泉河站(上)、林芝站(下)干、湿位相气温(左列,单位:℃)、风速(中列,单位:m s-1)、比湿(右列,单位:g kg-1)的日变化。蓝色实线代表湿位相当天,红色实线代表干位相当天,下同

    Figure  11.  Diurnal variations of air temperature (left column, units: ℃), wind speed (middle column, units: m s-1), specific humidity (right column, units: g kg-1) for Shiquanhe station (top panels) and Linzhi station (bottom panels). The blue solid lines and red solid lines indicate the days of wet phase and dry phase respectively, the same below

    图  12  狮泉河站(上)、林芝站(下)干、湿位相(a、e)动量通量(单位:kg m-1 s-2)、(b、f)感热通量(单位:W m-2)、(c、g)潜热通量(单位:W m-2)、(d、h)波文比的日变化

    Figure  12.  Diurnal variations of (a, e) momentum fluxes (units: kg m-1 s-2), (b, f) sensible heat fluxes (units: W m-2), (c, g) latent heat fluxes (units: W m-2), (d, h) Bowen ratios for Shiquanhe station (top panels) and Linzhi station (bottom panels), respectively

    图  13  狮泉河站(上)、林芝站(下)干、湿位相(a、c)湍流平均动能(单位:m2 s-2)、(b、d)垂直速度(单位:m s-1)的日变化

    Figure  13.  Diurnal variations of (a, c) average kinetic energy (units: m2 s-2) of turbulence, (b, d) vertical velocity (units: m s-1) for Shiquanhe station (top panels) and Linzhi station (bottom panels), respectively

    图  14  狮泉河站(上)、林芝站(下)干、湿位相(a、b、e、f)垂直动量输送(a、e为经向输送,b、f为纬向输送,单位:m2 s-2)、(c、g)垂直热量输送(单位:℃ m s-1)、(d、h)垂直水汽输送(单位:g m-2 s-1)的日变化

    Figure  14.  Diurnal variations of (a, b, c, d) vertical momentum transport (VMT, units: m2 s-2, Figs. a and e represent meridional transport, Figs. b and f represent zonal transport), (c, g) vertical heat transport (VHT, units: ℃ m s-1), (d, h) vertical water vapor transport (VWVT, units: g m-2 s-1) for Shiquanhe station (top panels) and Linzhi station (bottom panels), respectively

  • [1] 陈万隆, 翁笃鸣. 1984.青藏高原气象科学实验论文集(二)[M].北京:科学出版社.

    Chen Wanlong, Weng Duming. 1984.Proceedings of the Tibetan Plateau Meteorological Experiment (2) (in Chinese)[M]. Beijing:Science Press.
    [2] Duchon C E. 2010. Lanczos filtering in one and two dimensions[J]. J. Appl. Meteor., 18 (8):1016-1022, doi:10.1175/1520-0450(1979)018 < 1016:LFIOAT > 2.0.CO; 2.
    [3] Feng Z Q, Reiter E R, Chen L X. 1985. The atmospheric heat budget over the western part of the Tibetan Plateau during MONEX, 1979[J]. Adv. Atmos. Sci., 2 (4):455-468, doi: 10.1007/BF02678744.
    [4] Gilman D L, Fuglister F J, Mitchell J M Jr. 1963. On the power spectrum of "Red Noise"[J]. J. Atmos. Sci., 20 (2):182-184, doi:10.1175/1520-0469 (1963)020 < 0182:OTPSON > 2.0.CO; 2.
    [5] 巩远发, 许美玲, 何金海, 等. 2006.夏季青藏高原东部降水变化与副热带高压带活动的研究[J].气象学报, 64 (1):90-99. doi: 10.3321/j.issn:0577-6619.2006.01.009

    Gong Yuanfa, Xu Meiling, He Jinhai, et al. 2006. On the relationship between the eastern Tibet Plateau rainfall and subtropical high shift in summer[J]. Acta Meteor. Sinica (in Chinese), 64 (1):90-99, doi: 10.3321/j.issn:0577-6619.2006.01.009.
    [6] He J H, Chen L Z. 1988. The Southern Hemisphere mid-latitude quasi-40-day periodic oscillation with its effect on the Northern Hemisphere summer monsoon circulation[J]. Acta Meteor. Sinica, 2 (3):331-339. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXW198803005.htm
    [7] 贺懿华, 李才媛, 金琪, 等. 2006.夏季青藏高原TBB低频振荡及其与华中地区旱涝的关系[J].高原气象, 25 (4):658-664. doi: 10.3321/j.issn:1000-0534.2006.04.013

    He Yihua, Li Caiyuan, Jin Qi, et al. 2006. Relationship between the low frequency oscillation of TBB in summer of Qinghai-Xizang Plateau and drought/flood in central China[J]. Plateau Meteor. (in Chinese), 25 (4):658-664, doi: 10.3321/j.issn:1000-0534.2006.04.013.
    [8] Hu W T, Duan A M, Li Y, et al. 2016. The intraseasonal oscillation of eastern Tibetan Plateau precipitation in response to the summer Eurasian wave train[J]. J. Climate, doi: 10.1175/JCLI-D-15-0620.1.
    [9] 简茂球, 罗会邦, 乔云亭. 2004.青藏高原东部和西太平洋暖池区大气热源与中国夏季降水的关系[J].热带气象学报, 20 (4):355-364. doi: 10.3969/j.issn.1004-4965.2004.04.003

    Jian Maoqiu, Luo Huibang, Qiao Yunting. 2004. On the relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool[J]. Journal of Tropical Meteorology (in Chinese), 20 (4):355-364, doi: 10.3969/j.issn.1004-4965.2004.04.003.
    [10] Krishnamurti T N, Subrahmanyam D. 1982. The 30-50 day mode at 850 mb during MONEX[J]. J. Atmos. Sci., 39 (9):2088-2095, doi:10.1175/1520-0469(1982)039 < 2088:TDMAMD > 2.0.CO; 2.
    [11] 李跃清. 1996. 1981和1982年夏半年高原地区低频振荡与南亚高压活动[J].高原气象, 15 (3):276-281. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX603.002.htm

    Li Yueqing. 1996. The low-frequency oscillation over the Qinghai-Xizang Plateau and the activities of the South Asia high during the summer half year in 1981 and 1982[J]. Plateau Meteor. (in Chinese), 15 (3):276-281. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX603.002.htm
    [12] 李跃清. 2011.第三次青藏高原大气科学试验的观测基础[J].高原山地气象研究, 31 (3):77-82. doi: 10.3969/j.issn.1674-2184.2011.03.016

    Li Yueqing. 2011. The observational basis of the 3rd Tibetan Plateau atmospheric scientific experiment[J]. Plateau and Mountain Meteorology Research (in Chinese), 31 (3):77-82, doi:10. 3969/j.issn.1674-2184.2011.03.016.
    [13] 李云康, 孙照渤, 章基嘉. 1991.夏半年青藏高原及其附近30~60天振荡与大气环流的关系[J].南京气象学院学报, 14 (S3):483-488. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX1991S1015.htm

    Li Yunkang, Sun Zhaobo, Zhang Jijia. 1991. Relationship between the 30-60 day oscillations in and around the Qinghai-Xizang Plateau during the summer half year and the atmospheric circulation[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 14 (S3):483-488. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX1991S1015.htm
    [14] 李胜功, 原茵芳信, 何宗颖, 等. 1994.奈曼沙漠化对草地微气象特性影响的研究[J].大气科学, 27 (6):758-763. doi: 10.3878/j.issn.1006-9895.1994.06.13

    Li Shenggong, Harazono Y, He Zongying, et al. 1994. A study of the influence of desertification on micrometeorological characteristics of grassland at Naiman, Inner Mongolia, China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27 (6):758-763, doi: 10.3878/j.issn.1006-9895.1994.06.13.
    [15] 李家伦, 洪钟祥, 孙菽芬. 2000.青藏高原西部改则地区大气边界层特征[J].大气科学, 24 (3):301-312. doi: 10.3878/j.issn.1006-9895.2000.03.02

    Li J L, Hong Z X, Sun S F. 2000. An observational experiment on the atmospheric boundary layer in Gerze area of the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 24 (3):301-312, doi: 10.3878/j.issn.1006-9895.2000.03.02.
    [16] 李国平, 段廷扬, 吴贵芬. 2003.青藏高原西部的地面热源强度及地面热量平衡[J].地理科学, 23 (1):13-18. doi: 10.3969/j.issn.1000-0690.2003.01.003

    Li Guoping, Duan Tingyang, Wu Guifen. 2003. The intensity of surface heat source and surface heat balance on the western Qinghai-Xizang Plateau[J]. Scientia Geographica Sinica (in Chinese), 23 (1):13-18, doi:10.3969/j.issn.1000-0690.2003. 01.003.
    [17] 李茂善, 杨耀先, 马耀明, 等. 2012.纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J].高原气象, 31 (4):875-884. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201204002.htm

    Li Maoshan, Yang Yaoxian, Ma Yaoming, et al. 2012. Analyses on turbulence data control and distribution of surface energy flux in Namco area of Tibetan Plateau[J]. Plateau Meteor. (in Chinese), 31 (4):875-884. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201204002.htm
    [18] 李娟, 李跃清, 蒋兴文, 等. 2016.青藏高原东南部复杂地形区不同天气状况下陆气能量交换特征分析[J].大气科学, 40 (4):777-791. doi: 10.3878/j.issn.1006-9895.1509.15197

    Li Juan, Li Yueqing, Jiang Xingwen, et al. 2016. Characteristics of land-atmosphere energy exchanges over complex terrain area of southeastern Tibetan Plateau under different synoptic conditions[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (4):777-791, doi: 10.3878/j.issn.1006-9895.1509.15197.
    [19] 刘宇, 邹捍, 胡非. 2004.青藏高原珠峰绒布河谷地区大气近地层观测研究[J].高原气象, 23 (4):512-518. doi: 10.3321/j.issn:1000-0534.2004.04.015

    Liu Yu, Zou Han, Hu Fei. 2004. Observation study on atmospheric surface layer in Rongbu valley in Zumolama Peak area of Qinghai-Xizang Plateau[J]. Plateau Meteor. (in Chinese), 23 (4):512-518, doi: 10.3321/j.issn:1000-0534.2004.04.015.
    [20] 马耀明. 2007.中国科学院珠穆朗玛峰大气与环境综合观测研究站:一个新的研究喜马拉雅山区地气相互作用过程的综合基地[J].高原气象, 26 (6):1141-1145. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200706002.htm

    Ma Yaoming. 2007. An introduction to atmospheric and environmental comprehensive observation and research station on Mount Qomolangma, Chinese Academy of Sciences (AECORSQ, CAS):A new base for the study of atmosphere-land interaction over the Himalaya area[J]. Plateau Meteor. (in Chinese), 26 (6):1141-1145. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200706002.htm
    [21] 马耀明, 塚本修, 吴晓鸣, 等. 2000.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学, 24 (5):715-722. doi: 10.3878/j.issn.1006-9895.2000.05.16

    Ma Yaoming, Tsukamato O, Wu Xiaoming, et al. 2000. Characteristics of energy transfer and micrometeorology in the surface layer of the atmosphere above grassy marshland of the Tibetan Plateau area[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24 (5):715-722, doi:10.3878/j. issn.1006-9895.2000.05.16.
    [22] 马耀明, 姚檀栋, 王介民. 2006.青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J].高原气象, 25 (2):344-351. doi: 10.3321/j.issn:1000-0534.2006.02.023

    Ma Yaoming, Yao Tandong, Wang Jiemin. 2006. Experimental study of energy and water cycle in Tibetan Plateau-The progress introduction on the study of GAME/Tibet and CAMP/Tibet[J]. Plateau Meteor. (in Chinese), 25 (2):344-351, doi: 10.3321/j.issn:1000-0534.2006.02.023.
    [23] Mao J Y, Chan J C L. 2005. Intraseasonal variability of the South China Sea summer monsoon[J]. J. Climate, 18 (13):2388-2402, doi: 10.1175/JCLI3395.1.
    [24] 苗曼倩, 曹鸿, 季劲钧. 1998.青藏高原大气边界层湍流特征量分析[J].高原气象, 37 (4):356-363. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX804.002.htm

    Miao Manqian, Cao Hong, Ji Jinjun. 1998. Analysis of turbulent characteristics in atmospheric boundary layer over the Qinghai-Xizang Plateau[J]. Plateau Meteor. (in Chinese), 37 (4):356-363. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX804.002.htm
    [25] Nitta T. 1983. Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon[J]. J. Meteor. Soc. Japan (in Japanese), 61 (4):590-605. doi: 10.2151/jmsj1965.61.4_590
    [26] Mao J Y, Pan W T, Wu G X. 2013. Characteristics and mechanism of the 10-20-day oscillation of spring rainfall over southern China[J]. J. Climate, 26 (14):5072-5087, doi: 10.1175/JCLI-D-12-00618.1.
    [27] 彭艳, 张宏升, 刘辉志, 等. 2005.青藏高原近地面层气象要素变化特征[J].北京大学学报(自然科学版), 41 (2):180-190. doi: 10.3321/j.issn:0479-8023.2005.02.003

    Peng Yan, Zhang Hongsheng, Liu Huizhi, et al. 2005. Characteristics of micro-meteorology in the surface layer over Tibetan Plateau area[J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 41 (2):180-190, doi: 10.3321/j.issn:0479-8023.2005.02.003.
    [28] 孙国武, 陈葆德. 1988.青藏高原上空大气低频波的振荡及其经向传播[J].大气科学, 12 (3):250-256. doi: 10.3878/j.issn.1006-9895.1988.03.04

    Sun Guowu, Chen Baode. 1988. Oscillation characteristics and meridional propagation of atmospheric low frequency waves over the Qinghai-Xizang Plateau[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 12 (3):250-256, doi:10.3878/j.issn. 1006-9895.1988.03.04.
    [29] 孙菽芬, 卢志泊. 1989.一个可与大气环流模式相耦合的陆地水热交换模式[J].中国科学(B辑), 19 (2):216-224. doi: 10.1360/yb1990-33-3-334

    Sun Shufen, Lu Zhibo. 1990. A ground hydrologic model with inclusion of a layer of vegetation canopy that can interact with general circulation model[J]. Science in China (Series B), 33 (3):334-344, doi: 10.1360/yb1990-33-3-334.
    [30] 孙国武, 陈葆德. 1994.青藏高原大气低频振荡与低涡群发性的研究[J].大气科学, 18 (1):113-121. doi: 10.3878/j.issn.1006-9895.1994.01.14

    Sun Guowu, Chen Baode. 1994. Characteristics of the lows flocking with Tibet atmospheric low frequency oscillation over Qinghai-Xizang Plateau[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 18 (1):113-121, doi:10.3878/j. issn.1006-9895.1994.01.14.
    [31] 孙国武, 陈葆德, 刘晓东. 1992.青藏高原大气低频振荡与黄河上游水量枯丰的关系[J].高原气象, 11 (1):107-112. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199201013.htm

    Sun Guowu, Chen Baode, Liu Xiaodong. 1992. The research on relationship between low frequency oscillation over Qinghai-Xizang Plateau and rich or poor water in upper reaches of Yellow River[J]. Plateau Meteor. (in Chinese), 11 (1):107-112. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199201013.htm
    [32] Wang C H, Y. Cui, and S. L. Jin. 2011. Oscillation propagation features of the atmosphere around the Qinghai-Xizang during the spring season of typical strong and weak monsoon years[J]. Sci. China, 54:305-314. doi: 10.1007/s11430-010-4113-x
    [33] 王介民, 邱华盛. 2000.中日合作亚洲季风实验——青藏高原实验(GAME-Tibet)[J].中国科学院院刊, (5):386-388. http://www.cnki.com.cn/Article/CJFDTOTAL-KYYX200005019.htm

    Wang Jiemin, Qiu Huasheng. 2000. The Asian monsoon experiment of the cooperation between China and Japan-The experiment of Tibetan Plateau (GAME-Tibet)[J]. Bulletin of Chinese Academy of Sciences (in Chinese), (5):386-388. http://www.cnki.com.cn/Article/CJFDTOTAL-KYYX200005019.htm
    [34] Wang M R, Duan A M. 2015. Quasi-biweekly oscillation over the Tibetan Plateau and its link with the Asian summer monsoon[J]. J. Climate, 28 (12), doi: 10.1175/JCLI-D-14-00658.1
    [35] 翁笃鸣, 潘守文, 沈志宝. 1984.青藏高原地面辐射平衡和热量平衡考察概况[J].气象, 10 (8):2-6. doi: 10.7519/j.issn.1000-0526.1984.08.001

    Weng Duming, Pan Shouwen, Shen Zhibao. 1984. The inspection situation of the surface radiation balance and heat balance over the Tibetan Plateau[J]. Plateau and Mountain Meteorology Research (in Chinese), 10 (8):2-6, doi:10.7519/j.issn. 1000-0526.1984.08.001.
    [36] 谢安, 叶谦, 陈隆勋. 1989.青藏高原及其附近地区大气周期振荡在OLR资料上的反映[J].气象学报, 47 (3):272-278. doi: 10.11676/qxxb1989.036

    Xie An, Ye Qian, Chen Longxun. 1989. The atmospheric oscillations over the Tibetan Plateau and surrounding areas as revealed from OLR data[J]. Acta Meteor. Sinica (in Chinese), 47 (3):272-278, doi:10.11676/qxxb1989. 036.
    [37] 徐祥德, 陈联寿. 2006.青藏高原大气科学试验研究进展[J].应用气象学报, 17 (6):756-772. doi: 10.3969/j.issn.1001-7313.2006.06.013

    Xu Xiangde, Chen Lianshou. 2006. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science (in Chinese), 17 (6):756-772, doi: 10.3969/j.issn.1001-7313.2006.06.013.
    [38] Yanai M. 1961. A detailed analysis of typhoon formation[J]. J. Meteor. Soc. Japan, 39 (4):187-214. doi: 10.2151/jmsj1923.39.4_187
    [39] Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J]. J. Atmos. Sci., 30 (4):611-627, doi:10.1175/1520-0469(1973)030 < 0611:DOBPOT > 2.0.CO; 2.
    [40] 姚兰昌, 王安宇, 王谦谦, 等. 1984.青藏高原气象科学实验论文集(一)[M].北京:科学出版社, 291-302.

    Yao Lanchang, Wang Anyu, Wang Qianqian, et al. 1984. Proceedings of the Tibetan Plateau Meteorological Experiment (1) (in Chinese)[M]. Beijing:Science Press, 291-302.
    [41] 叶笃正, 高由禧, 周明煜, 等. 1979.青藏高原气象学[M].北京:科学出版社, 87-201.

    Ye Duzheng, Gao Youxi, Zhou Mingyu, et al. Qinghai-Xizang Plateau Meteorology (in Chinese)[M]. Beijing:Science Press, 87-201.
    [42] 张可苏. 1980.大气动力学模式的比较研究[J].中国科学, 10 (3):277-287. http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198003006.htm

    Zhang Kesu. 1981. A comparative study of atmospheric dynamic models[J]. Scientia Sinica, 24 (1):74-88. http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198003006.htm
    [43] Zhang P F, Li G P, Fu X H, et al. 2014. Clustering of Tibetan Plateau vortices by 10-30-day intraseasonal oscillation[J]. Mon. Wea. Rev., 142 (1):290-300, doi: 10.1175/MWR-D-13-00137.1.
    [44] Zhang Y, Chen L X, He J H, et al. 2009. A study of the characteristics of the low-frequency circulation over the Tibetan Plateau and its association with precipitation in the Yangtze River valley in 1998[J]. Acta Meteor. Sinica, 23 (2):175-190. http://en.cnki.com.cn/Article_en/CJFDTotal-QXXW200902006.htm
    [45] 周兵, 何金海, 徐海明. 2000.青藏高原气象要素场低频特征及其与夏季区域降水的关系[J].南京气象学院学报, 23 (1):93-100. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200001014.htm

    Zhou Bing, He Jinhai, Xu Haiming. 2000. LFO characteristics of meteorological elements over Tibetan Plateau and the relations with regional summer rainfall[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 23 (1):93-100. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200001014.htm
    [46] 朱治林, 孙晓敏, 袁国富, 等. 2004.非平坦下垫面涡度相关通量的校正方法及其在China FLUX中的应用[J].中国科学(D辑:地球科学), 34 (S2):37-45. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S2003.htm

    Zhu Zhilin, Sun Xiaomin, Yuan Guofu, et al. 2005. Correcting method of eddy covariance fluxes over non-flat surfaces and its application in China FLUX[J]. Science in China (Series D):Earth Sciences, 48 (S1):42-50. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S2003.htm
  • 加载中
图(14)
计量
  • 文章访问数:  1937
  • HTML全文浏览量:  4
  • PDF下载量:  1332
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-02
  • 网络出版日期:  2017-01-05
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回