高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2002年夏季中高纬大气准双周振荡对华南降水的影响

孔晓宇 毛江玉 吴国雄

孔晓宇, 毛江玉, 吴国雄. 2002年夏季中高纬大气准双周振荡对华南降水的影响[J]. 大气科学, 2017, 41(6): 1204-1220. doi: 10.3878/j.issn.1006-9895.1703.16277
引用本文: 孔晓宇, 毛江玉, 吴国雄. 2002年夏季中高纬大气准双周振荡对华南降水的影响[J]. 大气科学, 2017, 41(6): 1204-1220. doi: 10.3878/j.issn.1006-9895.1703.16277
Xiaoyu KONG, Jiangyu MAO, Guoxiong WU. Influence on the South China Rainfall Anomalies of the Atmospheric QuasiBiweekly Oscillation in Mid-High Latitude during the Summer of 2002[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1204-1220. doi: 10.3878/j.issn.1006-9895.1703.16277
Citation: Xiaoyu KONG, Jiangyu MAO, Guoxiong WU. Influence on the South China Rainfall Anomalies of the Atmospheric QuasiBiweekly Oscillation in Mid-High Latitude during the Summer of 2002[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1204-1220. doi: 10.3878/j.issn.1006-9895.1703.16277

2002年夏季中高纬大气准双周振荡对华南降水的影响

doi: 10.3878/j.issn.1006-9895.1703.16277
基金项目: 

国家自然科学基金项目 91537103

国家自然科学基金项目 41375087

全球变化与海气相互作用专项 GASI-IPOVAI-03

中国科学院前沿科学重点研究项目 QYZDY-SSW-DQC018

详细信息
    作者简介:

    孔晓宇, 女, 1992年出生, 硕士研究生, 主要从事大气低频振荡研究。E-mail:kongxiaoyu@lasg.iap.ac.cn

    通讯作者:

    吴国雄, E-mail:gxwu@lasg.iap.ac.cn

  • 中图分类号: P466

Influence on the South China Rainfall Anomalies of the Atmospheric QuasiBiweekly Oscillation in Mid-High Latitude during the Summer of 2002

Funds: 

National Natural Science Foundation of China 91537103

National Natural Science Foundation of China 41375087

National Program on Global Change and Air-Sea Interaction GASI-IPOVAI-03

Frontier Program of the Chinese Academy of Sciences QYZDY-SSW-DQC018

  • 摘要: 利用JRA55大气再分析资料和TRMM卫星降水资料,分析了2002年夏季(5~8月)华南地区降水的低频振荡特征,重点揭示了对其影响显著的中高纬大气季节内振荡的环流结构及演变。小波和功率谱分析表明,2002年夏季华南降水表现为主周期为10~30 d的准双周低频振荡。典型低频降水事件及合成分析指出,准双周降水的强(弱)变化除了受低空西北太平洋副热带高压西伸进入(东移退出)南海的影响以外,还显著地依赖于中高纬地区高空大气环流的季节内振荡。在对流层高层,中高纬度地区存在一支自大西洋经欧亚大陆的气旋—反气旋相间排列的低频波列。该波列在欧亚大陆地区向东南传播,当异常反气旋和气旋分别位于青藏高原和华北上空时,这种偶极型环流之间的高空辐散场有利于华南地区上升运动的发展,因而华南降水偏强;反之,华南降水偏弱。研究还表明,低频波列南移造成了对流层异常温度平流和副热带高层异常绝对涡度的变化,使得华南地区上升与下沉运动交替出现以及相应的经向环流圈反转,从而导致华南准双周振荡干湿位相的转换。局地异常感热加热对干湿位相转换也起一定作用。时滞相关分析发现,当青藏高原地区500 hPa位势高度异常场超前于华南异常降水4 d(即位相差为1/4周期)时,二者出现显著正相关,表明青藏高原地区500 hPa位势高度异常对预测华南地区季节内降水变化有潜在的应用价值。
  • 图  1  2002年夏季(5~8月)降水总量距平百分率(等值线,%)和10~90 d滤波的季节内降水标准差(阴影,mm d-1)。气候态为1998~2010年夏季降水的多年平均值。等值线间隔为10%,实(虚)线表示距平百分率正(负)值区。红色方框表示华南关键区(25°~30°N,105°~120°E)

    Figure  1.  Distribution of percentage of rainfall departure (contours, %) from climatological precipitation and the intraseasonal standard deviation (shading, mm d-1) of the 10-90-day filtered daily rainfall in the summer of 2002. Climatological precipitation is the multi-year summer precipitation averaged over the period of 1998-2010. The contour interval is 10%, with solid (dashed) countours denoting positive (negative) rainfall anomalies. Red rectangle denotes the key area in South China (25°-30°N, 105°-120°E)

    图  2  (a)华南关键区(25°~30°N,105°~120°E)区域平均的夏季(5~8月)逐日降水量和降水量异常。黑色细实线代表 2002年,黑色粗实线为气候态,蓝色(黄色)阴影部分表示2002年降水量相对于气候态为正(负)距平的时段。黑色虚线表示2002年10~30 d滤波的低频降水序列,红色实线表示低频降水序列的零线,红色虚线表示低频降水序列正、负异常为1个标准差的等值线。浅蓝色圆点标识出振幅大于1个标准差的显著准双周循环,数字1~8代表准双周振荡的典型不同位相。(b)华南关键区区域平均的降水序列小波谱。实(虚)线表示正(负)值,阴影区表示谱系数通过红噪声检验而置信度超过95%的显著频谱区,粗点线以外的区域受边缘效应的影响

    Figure  2.  (a) Time series of area-averaged daily rainfall (left y axis) and daily rainfall anomaly (right y axis) over the key area (25°-30°N, 105°-120°E) in South China during the summer from 1 May to 31 August of 2002 (black thin curve) and for climatology (black thick curve). Positive (negative) rainfall anomalies with respect to climatology are shaded in blue (yellow) colors. The black dashed curve is the time series of the 10-30-day filtered area-averaged daily rainfall anomaly, the parallel red dashed lines indicate the positive and negative rainfall anomalies equal to one standard deviation, red solid line represents the mean value). Light blue dots show the selected significant cycles of the quasi-biweekly oscillation with amplitude greater than one standard deviation. Numbers 1 to 8 represent the phases of the quasi-biweekly oscillation. (b) Wavelet spectra of daily rainfall time series averaged over the key area using the sixth-order derivative of a Gaussian as wavelet basis function. Shadings indicate the spectral coefficients statistically significant at the 95% confidence level for a red-noise process. Thick dashed line indicates the cone of influence. The edge effects become important outside the cone

    图  3  10~30 d滤波的降水异常(填色)合成。打点区代表降水异常通过信度为90%的显著性检验的区域

    Figure  3.  Evolution of composite 10-30-day filtered rainfall anomalies (shading) during a quasi-biweekly oscillation from phases 1 to 8. Stippling denotes the regions where the rainfall anomalies are statistically significant at the 90% confidence level

    图  4  合成的10~30 d滤波的850 hPa风场(流线,黑色线段表示纬向风或经向风分量通过信度为90%的显著性检验的流线,“A”和“C”分别代表异常反气旋和异常气旋)和水汽通量散度场(填色,单位:10-5 g kg-1s-1)。灰色阴影区表示地形

    Figure  4.  Evolution of composite 10-30-day filtered 850-hPa winds (streamlines, with black segments denoting anomalous zonal or meridional wind components statistically significant at the 90% confidence level) and 850-hPa moisture flux divergence (shading, 10-5 g kg-1s-1) during a quasi-biweekly oscillation from phases 1 to 8. Letters A and C represent the anomalous anticyclone and anomalous cyclone, respectively. Gray shaded areas represent topography

    图  5  2002年夏季(5~8月)10~30 d滤波的华南低频降水时间序列与10~30 d滤波的500 hPa位势高度场的时滞相关。打点区为显著性检验超过90%信度水平的区域,负时滞天数表示位势高度异常超前于降水异常,正时滞天数表示位势高度异常落后于降水异常,棕色粗实线包围的区域指地形高度大于3000 m的青藏高原,下同

    Figure  5.  Evolution of lead-lag correlations (shading) of the 10-30-day filtered 500-hPa geopotential height anomalies with the time series of 10-30-day filtered area-averaged daily rainfall anomaly over the key area (25°-30°N, 105°-120°E) in South China for the summer of 2002 (1 May to 31 August). Stippling denotes the regions where the correlation coefficients are statistically significant at the 90% confidence level. Negative number such as -7 on the top left corner of each panel indicates that the geopotential height anomaly leads rainfall anomaly, and the opposite is true for positive number. The Tibetan Plateau with topography height above 3000 m is outlined by the brown solid curve, the same below

    图  6  合成的10~30 d滤波的500 hPa流场(黑色线段表示纬向风或经向风分量通过信度为90%的显著性检验的流线,“A”和“C”分别代表异常反气旋和异常气旋)与温度场(填色,单位:K)以及未滤波的500 hPa位势高度场(紫色虚线,为清晰仅显示5840 gpm和5880 gpm两条特征等高线)

    Figure  6.  Evolution of composite 10-30-day filtered 500-hPa winds (streamlines, with black segments denoting the anomalous zonal or meridional wind components statistically significant at the 90% confidence level) and 500-hPa air temperature (shading, K) superimposed on the unfiltered 500-hPa geopotential height field (purple dashed curves, only the two characteristic contours of 5840 and 5880 gpm are shown) during a quasi-biweekly oscillation from phases 1 to 8. Letters A and C represent the anomalous anticyclone and anomalous cyclone, respectively

    图  7  成的10~30 d滤波的200 hPa风场(流线, 黑色线段表示纬向风或经向风分量通过信度为90%的显著性检验的流线, “A”和“C”分别代表异常反气旋和异常气旋)、散度场(填色,单位:10−6 s−1)和波活动通量(粉色箭头,单位:m2 s−2

    Figure  7.  Evolution of composite 10-30-day filtered 200-hPa winds (streamlines, with black segments denoting anomalous zonal or meridional wind components statistically significant at the 90% confidence level), divergence at 200 hPa (shading, units: 10−6 s−1) and wave-activity fluxes (pink vectors, units: m2 s−2) during a quasi-biweekly oscillation from phases 1 to 8. Letters A and C represent the anomalous anticyclone and anomalous cyclone, respectively

    图  8  2002年6月10~24日10~30 d滤波的200 hPa风场(流线,“A”和“C”分别代表异常反气旋和异常气旋)和散度场(填色,单位:10-6 s-1)以及未滤波的200 hPa位势高度场(紫色虚线,为清晰仅显示12480 gpm至12560 gpm之间的特征等高线,间隔为40 gpm)。棕色粗实线包围的区域指地形高度大于3000 m的青藏高原

    Figure  8.  Evolution of the 10-30-day filtered 200-hPa winds (streamlines) and 200-hPa divergence (shading, 10-6 s-1) superimposed on the unfiltered 200-hPa geopotential height field (purple dashed curves, only several characteristic contours from 12480 to 12560 gpm are shown for clarity, the interval is 40 gpm) during a quasi-biweekly oscillation from 10 to 24 June 2002. Letters A and C represent the anomalous anticyclone and anomalous cyclone, respectively. The Tibetan Plateau with topography height above 3000 m is outlined by the brown solid curve

    图  9  10~30 d滤波的风场(矢量,经向风单位为m s-1,垂直速度ω单位为-10-2 Pa s-1,黑色箭头表示经向风或垂直速度分量通过信度为90%的显著性检验的矢量)、温度场(填色,单位:K,打点区代表温度异常通过信度为90%的显著性检验的区域)和位势高度场(等值线,实线表示位势高度正异常,虚线表示位势高度负异常,单位:gpm, 间隔为10 gpm)沿着105°~120°E经度带平均的纬度—气压合成剖面。灰色阴影表示地形,下同

    Figure  9.  Pressure-latitude cross sections (105°-120°E mean) of composite 10-30-day filtered wind (vectors, meridional wind in m s-1, vertical velocity ω in -10-2 Pa s-1, black arrows denote that the anomalous meridional or vertical wind components are statistically significant at the 90% confidence level), air temperature (shading, units: K), and geopotential height (contours, the contour interval is 10 gpm; solid (dashed) contours refer to positive (negative) anomalies) during a quasi-biweekly oscillation from phases 1 to 8. The gray shaded areas represent topography, the same below

    图  10  10~30 d滤波的风场(矢量,经向风单位为m s-1,垂直速度ω单位为-10-2 Pa s-1,黑色箭头表示经向风或垂直速度分量通过信度为90%的显著性检验的矢量)、10~30 d绝对涡度场(填色,单位:10-5 s-1,打点区代表涡度异常通过信度为90%的显著性检验的区域)和未滤波的绝对涡度场(等值线,间隔为2×10-5 s-1,粗实线为绝对涡度零线)沿着105°~120°E经度带平均的纬度—气压合成剖面

    Figure  10.  Pressure-latitude cross sections (105°-120°E mean) of composite 10-30-day filtered wind (vectors, meridional wind in m s-1, vertical velocity ω in -10-2 Pa s-1, with black arrows denoting anomalous meridional or vertical wind components statistically significant at the 90% confidence level), 10-30-day filtered absolute vorticity (shading, units: 10-5 s-1, the stippling represents the absolute vorticity anomalies statistically significant at the 90% confidence level), and unfiltered absolute vorticity (contours, with an interval of 2×10-5 s-1) during a quasi-biweekly oscillation from phases 1 to 8

    图  11  2002年夏季(5~8月)10~30 d滤波的华南关键区低频降水时间序列与10~30 d滤波的区域(20°~30°N,90°~120°E)平均感热异常序列的时滞相关系数。在横坐标中,负时滞天数表示感热异常超前于降水异常,正时滞天数表示感热异常落后于降水异常,红色实线是相关系数的零线,红色虚线代表相关系数显著性检验通过90%信度的临界值

    Figure  11.  Lead-lag correlation coefficients of the time series of 10-30-day filtered area-averaged daily rainfall anomaly over the key area (25°-30°N, 105°-120°E) with the time series of 10-30-day filtered daily sensible heating flux anomaly averaged over the area (20°-30°N, 90°-120°E) in South China for the summer (1 May to 31 August) of 2002. Negative days in abscissa indicate that the anomalous sensible heating leads anomalous rainfall, the opposite is true for positive number. Red solid line is the zero line of the correlation coefficients, red dashed lines represent the critical values of the correlation coefficients statistically significant at the 90% confidence level

  • [1] Duchon C E. 1979. Lanczos filtering in one and two dimensions[J]. J. Appl. Meteor., 18 (8):1016-1022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO; 2.
    [2] Ebita A, Kobayashi S, Ota Y, et al. 2011. The Japanese 55-year reanalysis "JRA-55":An interim report[J]. Scientific Online Letters on the Atmosphere Sola, 7:149-152, doi: 10.2151/sola.2011-038.
    [3] Fujinami H, Yasunari T. 2009. The effects of midlatitude waves over and around the Tibetan Plateau on submonthly variability of the East Asian summer monsoon[J]. Mon. Wea. Rev., 137 (7):2286-2304, doi: 10.1175/2009MWR2826.1.
    [4] Ghil M, Mo K. 1991. Intraseasonal oscillations in the global atmosphere. Part Ⅰ:Northern Hemisphere and tropics[J]. J. Atmos. Sci., 48 (5):752-779, doi:10.1175/1520-0469(1991)048<0752:IOITGA>2.0.CO; 2.
    [5] 谷德军, 纪忠萍, 高晓容, 等. 2013.广东前汛期降水与南海北部风场准双周振荡的关系[J].热带气象学报, 29 (2):189-197. doi: 10.3969/j.issn.1004-4965.2013.02.002

    Gu Dejun, Ji Zhongping, Gao Xiaorong, et al. 2013. The relationship between the rainfall during the annually first rainy season in Guangdong and the quasi-biweekly oscillation of wind field in the north of South China Sea[J]. J. Trop. Meteor., 29 (2):189-197, doi:10.3969/j.issn. 1004-4965.2013.02.002.
    [6] Held I M, Hou A Y. 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere[J]. J. Atmos. Sci., 37 (3):515-533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO; 2.
    [7] 纪忠萍, 谷德军, 孙广凤, 等. 2014. 2011年夏季广东季风槽暴雨与准双周振荡[J].热带气象学报, 30 (3):432-442. doi: 10.3969/j.issn.1004-4965.2014.03.04

    Ji Zhongping, Gu Dejun, Sun Guangfeng, et al. 2014. Torrential rains caused by monsoon trough in Guangdong and its quasi-biweekly oscillation during the summer of 2011[J]. J. Trop. Meteor., 30 (3):432-442, doi:10.3969/j.issn. 1004-4965.2014.03.04.
    [8] 琚建华, 钱诚, 曹杰. 2005.东亚夏季风的季节内振荡研究[J].大气科学, 29 (2):187-194. doi: 10.3878/j.issn.1006-9895.2005.02.03

    Ju Jianhua, Qian Cheng, Cao Jie. 2005. The intraseasonal oscillation of East Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 29 (2):187-194, doi:10.3878/j.issn.1006-9895. 2005.02.03.
    [9] Krishnamurti T N, Bhalme H N. 1976. Oscillations of a monsoon system. Part Ⅰ. Observational aspects[J]. J. Atmos. Sci., 33 (10):1937-1954, doi:10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO; 2.
    [10] 况雪源, 张耀存. 2006.东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J].高原气象, 25 (3):382-389. doi: 10.3321/j.issn:1000-0534.2006.03.004

    Kuang Xueyuan, Zhang Yaocun. 2006. Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River[J]. Plateau Meteorology, 25 (3):382-389, doi: 10.3321/j.issn:1000-0534.2006.03.004.
    [11] Lau K M, Yang G J, Shen S H. 1988. Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia[J]. Mon. Wea. Rev., 116 (1):18-37, doi:10.1175/1520-0493(1988)116<0018:SAICOS>2.0.CO; 2.
    [12] 李崇银. 1993.大气低频振荡[M].北京:气象出版社, 310pp.

    Li Chongyin. 1993. Low Frequency Oscillation in the Atmosphere[M]. Beijing:China Meteorological Press, 310pp.
    [13] Li J Y, Mao J Y. 2016. Experimental 15-day-lead statistical forecast of intraseasonal summer monsoon rainfall over eastern China[J]. Atmos. Ocean Sci. Lett., 9 (1):66-73, doi: 10.1080/16742834.2015.1126152.
    [14] Li J Y, Mao J Y, Wu G X. 2015. A case study of the impact of boreal summer intraseasonal oscillations on Yangtze rainfall[J]. Climate Dyn., 44 (9-10):2683-2702, doi: 10.1007/s00382-014-2425-9.
    [15] 林爱兰, 李春晖, 谷德军, 等. 2013.热带季节内振荡对广东6月降水的影响[J].热带气象学报, 29 (3):353-363. doi: 10.3969/j.issn.1004-4965.2013.03.001

    Lin Ailan, Li Chunhui, Gu Dejun, et al. 2013. Impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes[J]. J. Trop. Meteor., 29 (3):353-363, doi: 10.3969/j.issn.1004-4965.2013.03.001.
    [16] Liu Y M, Hoskins B J, Blackburn M. 2007. Impact of Tibetan orography and heating on the summer flow over Asia[J]. J. Meteor. Soc. Japan, 85B:1-19, doi: 10.2151/jmsj.85B.1.
    [17] Madden R A, Julian P R. 1971. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J]. J. Atmos. Sci., 28 (5):702-708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO; 2.
    [18] Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40-50 day period[J]. J. Atmos. Sci., 29 (6):1109-1123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO; 2.
    [19] 毛江玉, 吴国雄. 2005. 1991年江淮梅雨与副热带高压的低频振荡[J].气象学报, 63 (5):762-770. doi: 10.3321/j.issn:0577-6619.2005.05.020

    Mao Jiangyu, Wu Guoxiong. 2005. Intraseasonal variability in the Yangtze-Huaihe River rainfall and subtropical high during the 1991 Meiyu period[J]. Acta Meteor. Sinica, 63 (5):762-770, doi: 10.3321/j.issn:0577-6619.2005.05.020.
    [20] Mao J Y, Sun Z, Wu G X. 2010. 20-50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea[J]. Climate Dyn., 34 (5):747-761, doi: 10.1007/s00382-009-0628-2.
    [21] Murakami T. 1987. Intraseasonal atmospheric teleconnection patterns during the Northern Hemisphere summer[J]. Mon. Wea. Rev., 115 (9):2133-2154, doi:10.1175/1520-0493(1987)115<2133:IATPDT>2.0.CO; 2.
    [22] Plumb R A, Hou A Y. 1992. The response of a zonally symmetric atmosphere to subtropical thermal forcing:Threshold behavior[J]. J. Atmos. Sci., 49 (19):1790-1799, doi:10.1175/1520-0469(1992)049<1790:TROAZS>2.0.CO; 2.
    [23] Ren X J, Yang X Q, Sun X G. 2013. Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events[J]. J. Climate, 26 (22):8929-8946, doi: 10.1175/JCLI-D-12-00861.1.
    [24] Schneider E K. 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part Ⅱ. Nonlinear calculations[J]. J. Atmos. Sci., 34 (2):280-296, doi:10.1175/1520-0469(1977)034<0280:ASSSMO>2.0.CO; 2.
    [25] Schneider E K. 1987. A simplified model of the modified Hadley circulation[J]. J. Atmos. Sci., 44 (22):3311-3328, doi:10.1175/1520-0469(1987) 044<3311:ASMOTM>2.0.CO; 2.
    [26] Schneider E K, Lindzen R S. 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part Ⅰ. Linearized calculations[J]. J. Atmos. Sci., 34 (2):263-279, doi:10.1175/1520-0469(1977)034<0263:ASSSMO>2.0.CO; 2.
    [27] Simpson J, Kummerow C, Tao W K, et al. 1996. On the tropical rainfall measuring mission (TRMM)[J]. Meteor. Atmos. Phys., 60 (1):19-36, doi: 10.1007/BF01029783.
    [28] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. J. Atmos. Sci., 58 (6):608-627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO; 2.
    [29] 陶诗言, 朱福康. 1964.夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系[J].气象学报, 34 (4):385-396. doi: 10.11676/qxxb1964.039

    Tao Shiyan, Zhu Fukang. 1964. The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the West-Pacific subtropical anticyclone over the Far East[J]. Acta Meteor. Sinica, 34 (4):385-396, doi: 10.11676/qxxb1964.039.
    [30] Tao S Y, Chen L X. 1987. A review of recent research on the East Asian summer monsoon in China[M]//Chang C P, Krishnamurti T N. Monsoon Meteorology. Oxford, UK:Oxford University Press, 60-92.
    [31] Torrence C, Compo G P. 1998. A practical guide to wavelet analysis[J]. Bull. Amer. Meteor. Soc., 79 (1):61-78, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO; 2.
    [32] Wang M R, Duan A M. 2015. Quasi-biweekly oscillation over the Tibetan Plateau and its link with the Asian summer monsoon[J]. J. Climate, 28 (12):4921-4940, doi: 10.1175/JCLI-D-14-00658.1.
    [33] 温之平, 黄荣辉, 贺海晏, 等. 2006.中高纬大气环流异常和低纬30~60天低频对流活动对南海夏季风爆发的影响[J].大气科学, 30 (5):952-964. doi: 10.3878/j.issn.1006-9895.2006.05.23

    Wen Zhiping, Huang Ronghui, He Haiyan, et al. 2006. The influences of anomalous atmospheric circulation over mid-high latitudes and the activities of 30-60 d low frequency convection over low latitudes on the onset of the South China Sea summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 30 (5):952-964, doi:10.3878/j.issn.1006-9895. 2006.05.23.
    [34] Wilks D S. 1995. Statistical Methods in the Atmospheric Sciences[M]. New York, NY, USA:Academic Press, 464pp.
    [35] 吴国雄, 丑纪范, 刘屹岷, 等. 2002.副热带高压形成和变异的动力学问题[M].北京:科学出版社, 314pp.

    Wu Guoxiong, Chou Jifan, Liu Yimin, et al. 2002. Dynamics of the Formation and Variation of Subtropical Anticyclones[M]. Beijing:Science Press, 314pp.
    [36] 吴国雄, 何编, 刘屹岷, 等. 2016.青藏高原和亚洲夏季风动力学研究的新进展[J].大气科学, 40 (1):22-32. doi: 10.3878/j.issn.1006-9895.1504.15129

    Wu Guoxiong, He Bian, Liu Yimin, et al. 2016. Recent progresses on dynamics of the Tibetan Plateau and Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 40 (1):22-32, doi: 10.3878/j.issn.1006-9895.1504.15129.
    [37] Yang J, Wang B, Wang B, et al. 2010. Biweekly and 21-30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River basin[J]. J. Climate, 23 (5):1146-1159, doi: 10.1175/2009JCLI3005.1.
    [38] 姚秀萍, 于玉斌, 刘还珠. 2005. 2003年淮河流域异常降水期间副热带高压的特征[J].热带气象学报, 21 (4):393-401. doi: 10.3969/j.issn.1004-4965.2005.04.007

    Yao Xiuping, Yu Yubin, Liu Huanzhu. 2005. Characteristics of the subtropical anticyclone during the abnormal rainfall period over the Huaihe River region 2003[J]. J. Trop. Meteor., 21 (4):393-401, doi:10.3969/j.issn.1004-4965. 2005.04.007.
    [39] 张庆云, 陶诗言. 2003.夏季西太平洋副热带高压异常时的东亚大气环流特征[J].大气科学, 27 (3):369-380. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=20030307&journal_id=dqkx

    Zhang Qingyun, Tao Shiyan, 2003. The anomalous subtropical anticyclone in western Pacific and their association with circulation over East Asia during summer[J]. Chinese Journal of Atmospheric Sciences, 27 (3):369-380. http://www.dqkxqk.ac.cn/dqkx/dqkx/ch/reader/view_abstract.aspx?flag=1&file_no=20030307&journal_id=dqkx
    [40] 张庆云, 陶诗言, 张顺利. 2003.夏季长江流域暴雨洪涝灾害的天气气候条件[J].大气科学, 27 (6):1018-1030. doi: 10.3878/j.issn.1006-9895.2003.06.06

    Zhang Qingyun, Tao Shiyan, Zhang Shunli. 2003. The persistent heavy rainfall over the Yangtze River valley and its associations with the circulations over East Asia during summer[J]. Chinese Journal of Atmospheric Sciences, 27 (6):1018-1030, doi: 10.3878/j.issn.1006-9895.2003.06.06.
    [41] 周兵, 文继芬. 2007. 1998年夏季我国东部降水与大气环流异常及其低频特征[J].应用气象学报, 18 (2):129-136. doi: 10.3969/j.issn.1001-7313.2007.02.001

    Zhou Bing, Wen Jifen. 2007. Abnormality of summertime precipitation of eastern China and general circulation with LFO in 1998[J]. J. Appl. Meteor. Sci., 18 (2):129-136, doi: 10.3969/j.issn.1001-7313.2007.02.001.
    [42] 祝从文, Nakazawa T, 李建平. 2004.大气季节内振荡对印度洋-西太平洋地区热带低压/气旋生成的影响[J].气象学报, 62 (1):42-50. doi: 10.11676/qxxb2004.005

    Zhu Congwen, Nakazawa T, Li Jianping. 2004. Modulation of tropical depression/cyclone over the Indian-western Pacific oceans by Madden-Julian oscillation[J]. Acta Meteor. Sinica, 62 (1):42-50, doi: 10.11676/qxxb2004.005.
  • 加载中
图(11)
计量
  • 文章访问数:  4649
  • HTML全文浏览量:  118
  • PDF下载量:  1405
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-02
  • 网络出版日期:  2017-04-06
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回