高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“碧利斯”(2006)暴雨过程降水强度和降水效率分析

刘圣楠 崔晓鹏

刘圣楠, 崔晓鹏. “碧利斯”(2006)暴雨过程降水强度和降水效率分析[J]. 大气科学, 2018, 42(1): 192-208. doi: 10.3878/j.issn.1006-9895.1704.17148
引用本文: 刘圣楠, 崔晓鹏. “碧利斯”(2006)暴雨过程降水强度和降水效率分析[J]. 大气科学, 2018, 42(1): 192-208. doi: 10.3878/j.issn.1006-9895.1704.17148
Shengnan LIU, Xiaopeng CUI. Diagnostic Analysis of Rate and Efficiency of Torrential Rainfall Associated with Bilis (2006)[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(1): 192-208. doi: 10.3878/j.issn.1006-9895.1704.17148
Citation: Shengnan LIU, Xiaopeng CUI. Diagnostic Analysis of Rate and Efficiency of Torrential Rainfall Associated with Bilis (2006)[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(1): 192-208. doi: 10.3878/j.issn.1006-9895.1704.17148

“碧利斯”(2006)暴雨过程降水强度和降水效率分析

doi: 10.3878/j.issn.1006-9895.1704.17148
基金项目: 

国家重点基础研究发展计划(973计划)项目 2015CB452804

国家自然科学基金项目 41175056

详细信息
    作者简介:

    刘圣楠, 女, 1992年出生, 硕士研究生, 主要从事热带气旋暴雨过程研究。E-mail:liushengnan@mail.iap.ac.cn

    通讯作者:

    崔晓鹏, E-mail:xpcui@mail.iap.ac.cn

  • 中图分类号: P444

Diagnostic Analysis of Rate and Efficiency of Torrential Rainfall Associated with Bilis (2006)

Funds: 

National Basic Research Program of China (973 Program) 2015CB452804

National Natural Science Foundation of China 41175056

  • 摘要: 利用2006年第4号强热带风暴“碧利斯”登陆过程的高分辨率数值模拟资料,结合三维地面降水诊断方程和降水效率公式,研究了“碧利斯”登陆后引发的局地暴雨过程,重点分析了此次局地暴雨过程的降水强度和降水效率及其与宏微观物理因子的联系。结果表明,降水强度越强,降水效率越高,但两者并非一一对应的线性关系,随着降水强度增大,降水效率增高的趋势逐渐变缓;伴随暴雨系统快速发展,降水强度和降水效率均显著增强,而主要降水源/汇项的时间变化要复杂得多;暴雨发生前时段与发生时段降水物理过程存在显著差异,发生前,较明显的水汽辐合显著加湿局地大气,并通过微物理转化支持降水云系发展,液相水凝物辐合对降水云系快速发展贡献明显,固相水凝物辐合贡献不显著,较强的“云滴与雨滴碰并(Pracw)”微物理过程同液相水凝物明显辐合可能有直接关系,“霰融化造成雨滴增长(Pgmlt)”仅为Pracw的27%,发生时段,进一步明显加强的水汽辐合依旧是主要降水来源,而汇项发生了明显变化,同时,微物理转化过程与发生前比更活跃,尤其是PracwPgmlt,其中,Pgmlt增强更明显,其值接近Pracw的50%。
  • 图  1  (a)观测和(b)D02及(c)D03区域模拟的12小时(2006年7月14日18时至15日06时)累积降水量(单位:mm)。红色框所示区域为本文重点关注的局地暴雨区

    Figure  1.  (a) Observed and simulated (b: D02, c: D03) 12-h (from 1800 UTC 14 July to 0600 UTC 15 July 2006) accumulated precipitation (units: mm). The red rectangular boxes indicate the local heavy rainfall region, which is the main study area of the present paper

    图  2  D03区域模拟的2006年7月14日13时至15日06时局地暴雨区(图 1中红框所示区域)Ps(小时降水强度)和LSPE(大尺度降水效率)关系盒须图。盒子最高点代表 75%分位数,最低点代表 25%分位数,盒子里的黑色实线和实心圆点分别代表中位数和平均值

    Figure  2.  Box plot of the relation between simulated (D03) Ps (Hourly precipitation rate) and LSPE (Large-scale precipitation efficiency) in the local heavy rainfall region (indicated by the red rectangular box in Fig. 1) from 1300 UTC 14 July to 0600 UTC 15 July 2006. The uppermost borders of boxes denote the 75% percentile and the lowermost borders denote the 25% percentile; medians and mean values denoted by short black solid lines in boxes and solid dots, respectively

    图  3  图 2,但为QWVA(垂直积分的三维水汽通量辐合/辐散率)、垂直积分的对流有效位能(CAPE)和CR(固相水凝物/液相水凝物)与Ps(左)和LSPE(右)的关系盒须图

    Figure  3.  As in Fig. 2, but for the relations between QWVA (vertically integrated 3D flux convergence/divergence rate of moisture), CAPE (vertically-integrated convective available potential energy), CR (ratio of ice-phase to liquid-phase hydrometeors) and Ps (left), LSPE (right)

    图  4  图 2,但为垂直积分的PracwPgmltPsLSPE的关系盒须图

    Figure  4.  As in Fig. 2, but for the relations between vertically-integrated Pracw (accretion of cloud water by rainwater)/Pgmlt (melting of graupel) and PsLSPE

    图  5  图 2,但为(a1、a2)QWVL、(b1、b2)QCLL、(c1、c2)QCLA、(d1、d2)QCIL和(e1、e2)QCIAPsLSPE的关系盒须图

    Figure  5.  As in Fig. 2, but for the relations between (a1, a2) QWVL (vertically integrated negative local change rate of water vapor), (b1, b2) QCLL (vertically integrated negative local change rate of liquid-phase hydrometeors), (c1, c2) QCLA (vertically integrated 3D flux convergence/divergence rate of liquid-phase hydrometeors), (d1, d2) QCIL (vertically integrated negative local change rate of ice-phase hydrometeors), (e1, e2) QCIA (vertically integrated 3D flux convergence/divergence rate of ice-phase hydrometeor) and Ps/LSPE

    图  6  D03区域模拟的2006年7月14日13时至15日06时局地暴雨区(a)Ps和(b)LSPE随时间变化的盒须图。盒子最高点代表 75%分位数,最低点代表 25%分位数,盒子里的黑色实线和实心圆点分别代表中位数和平均值

    Figure  6.  Time series of box plots of the simulated (D03) (a) Ps and (b) LSPE in the local heavy rainfall region from 1300 UTC 14 July to 0600 UTC 15 July 2006. The uppermost borders of boxes denote the 75% percentile and the lowermost borders denote the 25% percentile; medians and mean values are denoted by short black solid lines in boxes and solid dots, respectively

    图  7  图 6,但为(a)QWVL、(b)QWVA、(c)QCLL、(d)QCLA、(e)QCIL、(f)QCIA和(g)QWVE随时间变化的盒须图

    Figure  7.  As in Fig. 6, but for time series of box plots of QWVL、(b)QWVA、(c)QCLL、(d)QCLA、(e)QCIL、(f)QCIA, and (g) QWVE (surface evaporation rate)

    图  8  图 6,但为垂直积分的(a)Pracw、(b)Pgmlt、(c)CAPE和(d)CR随时间变化的盒须图

    Figure  8.  As in Fig. 6, but for time series of box plots of vertically-integrated (a) Pracw, (b) Pgmlt, (c) CAPE (vertically-integrated convective available potential energy), and (d) CR (ratio of ice-phase to liquid-phase hydrometeors)

    表  1  局地暴雨发生前(14日15~17时)和发生时段(14日18时至15日06时)暴雨区(图 1红框所示区域)区域和时间平均的物理量(PsLSPEQWVLQWVAQWVEQWVDQCLLQCLAQCLDQCILQCIAQCID以及与雨滴相关的云微物理转化率)对比,其中,物理量列表中括号中数值为实际物理量值,括号外数值为将该时段Ps设为100后,物理量的相对数值;与雨滴相关的云微物理转化率物理含义参见表 2

    Table  1.   Comparisons of regionally and temporally averagedphysical quantities (Ps, LSPE, QWVL, QWVA, QWVE, QWVD, QCLL, QCLA, QCLD, QCIL, QCIA, QCID and raindrop-related microphysical conversion rates)before the occurrence of the local heavy rainfall (from 1500 UTC to 1700 UTC 14July) and during the heavy rainfall period (from 1800 UTC 14 July to 0600 UTC15 July). Values in brackets represent absolute magnitudes of the physicalquantities and values outside represent relative magnitudes of physicalquantities when setting Ps to 100. Physicaldescriptions of the raindrop-related microphysical conversion rates arepresented in Table 2

    平均时段 物理量
    局地暴雨发生前 Ps = 100(0.65 mm h-1 QCLL = -29.99(-0.19 mm h-1 Pracw = 103.75(0.67 mm h-1 -Piacr = -1.20(0.01 mm h-1
    (14日15~17时) LSPE = 20.2% QCLA = 24.03(0.16 mm h-1 Pgmlt = 28.43(0.18 mm h-1 -Dgacr = -2.21(0.01 mm h-1
    QWVL = -343.23(-2.22 mm h-1 QCLD = -0.41(-0.00 mm h-1 Qsacw = 0.25(0.00 mm h-1 -Psacr = -7.58(0.05 mm h-1
    QWVA = 461.88(2.99 mm h-1 QCIL = -20.79(-0.13 mm h-1 Praut = 0.05(0.00 mm h-1 -Pgfr = -1.12(0.01 mm h-1
    QWVD = -1.45(-0.01 mm h-1 QCIA = 4.80(0.03 mm h-1 Qgacw = 3.45(0.02 mm h-1 -Wgacr = 1.51(0.01 mm h-1
    QWVE = 5.11(0.03 mm h-1 QCID = 0.04(0.00 mm h-1 Psmlt = 2.90(0.02 mm h-1 -Ern = -22.87(-0.15 mm h-1
    局地暴雨发生时段 Ps = 100(4.92 mm h-1 QCLL = 0.12(0.01 mm h-1 Pracw = 77.15(3.80 mm h-1 -Piacr = -0.56(0.03 mm h-1
    (14日18时至15日06时) LSPE = 79.1% QCLA = -2.97(-0.15 mm h-1 Pgmlt = 37.27(1.83 mm h-1 -Dgacr = -1.79(0.09 mm h-1
    QWVL = -6.58(-0.32 mm h-1 QCLD = -0.16(-0.01 mm h-1 Qsacw = 0.16(0.01 mm h-1 -Psacr = -7.82(0.39 mm h-1
    QWVA = 123.03(6.06 mm h-1 QCIL = 1.28(0.06 mm h-1 Praut = 0.02(0.00 mm h-1 -Pgfr = -0.81(0.04 mm h-1
    QWVD = -0.15(-0.01 mm h-1 QCIA = -16.53(-0.81 mm h-1 Qgacw = 2.03(0.10 mm h-1 -Wgacr = 2.76(0.14 mm h-1
    QWVE = 1.98(0.10 mm h-1 QCID = -0.01(-0.00 mm h-1 Psmlt = 5.32(0.26 mm h-1 -Ern = -9.76(-0.48 mm h-1
    下载: 导出CSV

    表  2  表 1中与雨滴相关的云微物理转化率物理含义

    Table  2.   Physical descriptions of the raindrop-related microphysical conversion rates in Table 1

    雨滴相关的主要云微物理转化率 物理含义
    Pracw 雨滴碰并云滴造成雨滴增长
    Pgmlt 霰融化造成雨滴增长
    Qsacw 雪碰并云滴转化成雨滴
    Praut 云滴自动转化成雨滴
    Qgacw 霰碰并云滴转化成雨滴
    Psmlt 雪融化造成雨滴增长
    Piacr 云冰粘附雨滴造成雪或霰增长
    Dgacr 霰碰并雨滴干增长
    Psacr 雪碰并雨滴生成雪或霰
    Pgfr 雨滴冻结成霰
    Wgacr 霰碰并雨滴湿增长
    Ern 雨滴蒸发
    注:Sqr=(Qsacw+Praut+Pracw+Qgacw+Psmlt+Pgmlt)−(Piacr+Dgacr+Psacr+Pgfr+ Wgacr+ Ern)。Sqr表示雨滴收支;等式右边第一个括号里表示雨滴的源,第二个括号里表示雨滴的汇。
    下载: 导出CSV
  • [1] Bosart L F, Dean D B. 1991. The Agnes rainstorm of June 1972:Surface feature evolution culminating in inland storm redevelopment[J]. Wea. Forecasting, 6 (4):515-537, doi:10.1175/1520-0434(1991)006<0515:TAROJS>2.0.CO;2.
    [2] Braham Jr R R. 1952. The water and energy budgets of the thunderstorm and their relation to thunderstorm development[J]. J. Meteor., 9 (4):227-242, doi:10.1175/1520-0469(1952)009<0227:TWAEBO>2.0.CO;2.
    [3] Braun S A. 2006. High-resolution simulation of Hurricane Bonnie (1998). Part Ⅱ:Water budget[J]. J. Atmos. Sci., 63 (1):43-64, doi: 10.1175/JAS3609.1.
    [4] Chen F, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part Ⅰ:Model implementation and sensitivity[J]. Mon. Wea. Rev., 129 (4):569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
    [5] Chen L S. 1998. Decay after landfall[R]. WMO/TD, 875: 1-5.
    [6] 陈联寿, 丁一汇. 1979.西太平洋台风概论[M].北京:科学出版杜, 51.

    Chen Lianshou, Ding Yihui. 1979. Introduction to the Western Pacific Typhoon [M]. Beijing:Science Press, 51.
    [7] 陈联寿, 孟智勇. 2001.我国热带气旋研究十年进展[J].大气科学, 25 (3):420-432. doi: 10.3878/j.issn.1006-9895.2001.03.11

    Chen Lianshou, Meng Zhiyong. 2001. An overview on tropical cyclone research progress in China during the past ten years[J]. Chinese J. Atmos. Sci., 25 (3):420-432, doi:10.3878/j.issn. 1006-9895.2001.03.11.
    [8] Chen L S, Li Y, Cheng Z Q. 2010. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones[J]. Adv. Atmos. Sci., 27 (5):967-976, doi: 10.1007/s00376-010-8171-y.
    [9] 丛春华, 陈联寿, 雷小途, 等. 2011.台风远距离暴雨的研究进展[J].热带气象学报, 27 (2):264-270. doi: 10.3969/j.issn.1004-4965.2011.02.016

    Cong Chunhua, Chen Lianshou, Lei Xiaotu, et al. 2011. An overview on the study of tropical cyclone remote rainfall[J]. Journal of Tropical Meteorology, 27 (2):264-270, doi: 10.3969/j.issn.1004-4965.2011.02.016.
    [10] Cui X P. 2008. A cloud-resolving modeling study of diurnal variations of tropical convective and stratiform rainfall[J]. J. Geophys. Res., 113 (D2):D02113, doi: 10.1029/2007JD008990.
    [11] 崔晓鹏. 2009.地面降水诊断方程对降水过程的定量诊断[J].大气科学, 33 (2):375-387. doi: 10.3878/j.issn.1006-9895.2009.02.15

    Cui Xiaopeng. 2009. Quantitative diagnostic analysis of surface rainfall processes by surface rainfall equation[J]. Chinese J. Atmos. Sci., 33 (2):375-387, doi:10.3878/j.issn.1006-9895. 2009.02.15.
    [12] Cui X P, Gao S T, Wu G X. 2003. Up-sliding slantwise vorticity development and the complete vorticity equation with mass forcing[J]. Adv. Atmos. Sci., 20 (5):825-836, doi: 10.1007/BF02915408.
    [13] Cui X P, Li X F. 2006. Role of surface evaporation in surface rainfall processes[J]. J. Geophys. Res., 111 (D17):D17112, doi: 10.1029/2005JD006876.
    [14] Cui X P, Wang Y P, Yu H. 2015. Microphysical differences with rainfall intensity in severe tropical storm Bilis[J]. Atmospheric Science Letters, 16 (1):27-31, doi: 10.1002/asl2.515.
    [15] 戴竹君, 王黎娟, 管兆勇, 等. 2015.热带风暴"Bilis"(0604)暴雨增幅前后的水汽输送轨迹路径模拟[J].大气科学, 39 (2):422-432. doi: 10.3878/j.issn.1006-9895.1404.13340

    Dai Zhujun, Wang Lijuan, Guan Zhaoyong, et al. 2015. Simulation of water vapor transport paths before and after increased rainstorms from tropical storm Bilis (0604)[J]. Chinese J. Atmos. Sci., 39 (2):422-432, doi: 10.3878/j.issn.1006-9895.1404.13340.
    [16] 丁治英, 陈久康. 1995.有效位能和冷空气活动与台风暴雨增幅的研究[J].热带气象学报, 11 (1):80-85. http://mall.cnki.net/magazine/Article/QXXB196304014.htm

    Ding Zhiying, Chen Jiukang. 1995. A study of relationship between enhancement of typhoon rain and available potential energy and cold air[J]. Journal of Tropical Meteorology, 11 (1):80-85. http://mall.cnki.net/magazine/Article/QXXB196304014.htm
    [17] Doswell Ⅲ C A, Brooks H E, Maddox R A. 1996. Flash flood forecasting:An ingredients-based methodology[J]. Wea. Forecasting, 11 (4):560-581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.
    [18] 端义宏, 陈联寿, 梁建茵, 等. 2014.台风登陆前后异常变化的研究进展[J].气象学报, 72 (5):969-986. doi: 10.11676/qxxb2014.085

    Duan Yihong, Chen Lianshou, Liang Jianyin, et al. 2014. Research progress in the unusual variations of typhoons before and after landfalling[J]. Acta Meteor. Sinica, 72 (5):969-986, doi: 10.11676/qxxb2014.085.
    [19] Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J. Atmos. Sci., 46 (20):3077-3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
    [20] Fritsch J M, Chappell C F. 1980. Numerical prediction of convectively driven mesoscale pressure systems. Part Ⅰ:Convective parameterization[J]. J. Atmos. Sci., 37 (8):1722-1733, doi:10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.
    [21] Gao S T, Cui X P, Zhou Y S, et al. 2005. Surface rainfall processes as simulated in a cloud-resolving model[J]. J. Geophys. Res., 110 (D10):D10202, doi: 10.1029/2004JD005467.
    [22] Grell G A. 1993. Prognostic evaluation of assumptions used by cumulus parameterizations[J]. Mon. Wea. Rev., 121 (3):764-787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.
    [23] Heymsfield G M, Schotz S. 1985. Structure and evolution of a severe squall line over Oklahoma[J]. Mon. Wea. Rev., 113 (9):1563-1589, doi:10.1175/1520-0493(1985)113<1563:SAEOAS>2.0.CO;2.
    [24] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 134 (9):2318-2341, doi: 10.1175/MWR3199.1.
    [25] Huang H L, Yang M J, Sui C H. 2014. Water budget and precipitation efficiency of typhoon Morakot (2009)[J]. J. Atmos. Sci., 71 (1):112-129, doi: 10.1175/JAS-D-13-053.1.
    [26] Huang Y J, Cui X P. 2015a. Dominant cloud microphysical processes of a torrential rainfall event in Sichuan, China[J]. Adv. Atmos. Sci., 32 (3):389-400, doi: 10.1007/s00376-014-4066-7.
    [27] Huang Y J, Cui X P. 2015b. Moisture sources of torrential rainfall events in the Sichuan Basin of China during summers of 2009−13[J]. Journal of Hydrometeorology, 16 (4):1906-1917, doi: 10.1175/JHM-D-14-0220.1.
    [28] Huang Y J, Cui X P, Li X F. 2016. A three-dimensional WRF-based precipitation equation and its application in the analysis of roles of surface evaporation in a torrential rainfall event[J]. Atmospheric Research, 169:54-64, doi: 10.1016/j.atmosres.2015.09.026.
    [29] 冀春晓, 薛根元, 赵放, 等. 2007.台风Rananim登陆期间地形对其降水和结构影响的数值模拟试验[J].大气科学, 31 (2):233-244. doi: 10.3878/j.issn.1006-9895.2007.02.05

    Ji Chunxiao, Xue Genyuan, Zhao Fang, et al. 2007. The numerical simulation of orographic effect on the rain and structure of typhoon Rananim during landfall[J]. Chinese J. Atmos. Sci., 31 (2):233-244, doi: 10.3878/j.issn.1006-9895.2007.02.05.
    [30] Kain J S. 2004. The Kain-Fritsch convective parameterization:An update[J]. J. Appl. Meteor., 43 (1):170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
    [31] Kain J S, Fritsch J M. 1993. Convective parameterization for mesoscale models: The Kain-Fritsch scheme[M]//Raymond D J, Emanuel K A. The Representation of Cumulus Convection in Numerical Models. US: American Meteorological Society, 165-177, doi: 10.1007/978-1-935704-13-3_16.
    [32] Kuo H L. 1965. On formation and intensification of tropical cyclones through latent heat release by cumulus convection[J]. J. Atmos. Sci., 22 (1):40-63, doi:10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.
    [33] Kuo H L. 1974. Further studies of the parameterization of the influence of cumulus convection on large-scale flow[J]. J. Atmos. Sci., 31 (5):1232-1240, doi:10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2.
    [34] Lau K M, Wu H T. 2003. Warm rain processes over tropical oceans and climate implications[J]. Geophys. Res. Lett., 30 (24):2290, doi: 10.1029/2003GL018567.
    [35] 雷小途, 陈联寿. 2001.热带气旋与中纬度环流系统相互作用的研究进展[J].热带气象学报, 17 (4):452-461. doi: 10.3969/j.issn.1004-4965.2001.04.015

    Lei Xiaotu, Chen Lianshou. 2001. An overview on the interaction between tropical cyclone and mid-latitude weather systems[J]. Journal of Tropical Meteorology, 17 (4):452-461, doi: 10.3969/j.issn.1004-4965.2001.04.015.
    [36] Li H Q, Cui X P, Zhang D L. 2017. On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region[J]. Mon. Wea. Rev., 145 (1):181-197, doi: 10.1175/MWR-D-16-0115.1.
    [37] 李琴, 崔晓鹏, 曹洁. 2014.四川地区一次暴雨过程的观测分析与数值模拟[J].大气科学, 38 (6):1095-1108. doi: 10.3878/j.issn.1006-9895.1401.13255

    Li Qin, Cui Xiaopeng, Cao Jie. 2014. Observational analysis and numerical simulation of a heavy rainfall event in Sichuan Province[J]. Chinese J. Atmos. Sci., 38 (6):1095-1108, doi: 10.3878/j.issn.1006-9895.1401.13255.
    [38] Li X F, Sui C H, Lau K M. 2002. Precipitation efficiency in the tropical deep convective regime:A 2-D cloud resolving modeling study[J]. J. Meteor. Soc. Japan, 80 (2):205-212, doi: 10.2151/jmsj.80.205.
    [39] Marks Jr F D, Houze Jr R A. 1987. Inner core structure of hurricane Alicia from airborne Doppler radar observations[J]. J. Atmos. Sci., 44 (9):1296-1317, doi:10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2.
    [40] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. J. Geophys. Res., 102 (D14):16663-16682, doi:10. 1029/97JD00237.
    [41] Peyrillé P, Lafore J P, Boone A. 2016. The annual cycle of the West African monsoon in a two-dimensional model:Mechanisms of the rain-band migration[J]. Quart. J. Roy. Meteor. Soc., 142 (696):1473-1489, doi: 10.1002/qj.2750.
    [42] Ren C P, Cui X P. 2014. The cloud-microphysical cause of torrential rainfall amplification associated with Bilis (0604)[J]. Science China Earth Sciences, 57 (9):2100-2111, doi: 10.1007/s11430-014-4884-6.
    [43] Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A description of the advanced research WRF version 3[R]. NCAR Tech. Note NCAR/TN-475+STR, doi: 10.5065/D68S4MVH.
    [44] Sui C H, Li X F. 2005. A tendency of cloud ratio associated with the development of tropical water and ice clouds[J]. TAO, 16 (2):419-434, doi: 10.3319/TAO.2005.16.2.419(A).
    [45] Sui C H, Li X F, Yang M J. 2007. On the definition of precipitation efficiency[J]. J. Atmos. Sci., 64 (12):4506-4513, doi: 10.1175/2007JAS2332.1.
    [46] Sui C H, Li X F, Yang M J, et al. 2005. Estimation of oceanic precipitation efficiency in cloud models[J]. J. Atmos. Sci., 62 (12):4358-4370, doi: 10.1175/JAS3587.1.
    [47] 陶诗言. 1980.中国之暴雨[M].北京:科学出版社, 255pp.

    Tao Shiyan. 1980. Heavy Rainfall in China [M]. Beijing:Science Press, 255pp.
    [48] Tao W K, Simpson J, McCumber M. 1989. An ice-water saturation adjustment[J]. Mon. Wea. Rev., 117 (1):231-235, doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.
    [49] 王黎娟, 任晨平, 崔晓鹏, 等. 2013. "碧利斯"暴雨增幅高分辨率数值模拟及诊断分析[J].大气科学学报, 36 (2):147-157. doi: 10.3969/j.issn.1674-7097.2013.02.003

    Wang Lijuan, Ren Chenping, Cui Xiaopeng, et al. 2013. High-resolution numerical simulation and diagnostic analysis of rainfall amplification of Bilis (0604)[J]. Trans. Atmos. Sci., 36 (2):147-157, doi:10.3969/j.issn. 1674-7097.2013.02.003.
    [50] 汪亚萍, 崔晓鹏, 任晨平, 等. 2015a. "碧利斯"(0604)暴雨过程不同类型降水云微物理特征分析[J].大气科学, 39 (3):548-558. doi: 10.3878/j.issn.1006-9895.1408.14135

    Wang Yaping, Cui Xiaopeng, Ren Chenping, et al. 2015a. Cloud microphysical characteristics of different precipitation types in Bilis (0604) torrential rainfall events[J]. Chinese J. Atmos. Sci., 39 (3):548-558, doi: 10.3878/j.issn.1006-9895.1408.14135.
    [51] 汪亚萍, 崔晓鹏, 冉令坤, 等. 2015b.动力因子对2006"碧利斯"台风暴雨的诊断分析[J].大气科学, 39 (4):747-756. doi: 10.3878/j.issn.1006-9895.1411.14184

    Wang Yaping, Cui Xiaopeng, Ran Lingkun, et al. 2015b. Diagnosis of dynamical parameters in torrential rain associated with typhoon "Bilis" in 2006[J]. Chinese J. Atmos. Sci., 39 (4):747-756, doi:10.3878/j.issn.1006-9895. 1411.14184.
    [52] Yang M J, Zhang D L, Huang H L. 2008. A modeling study of typhoon Nari (2001) at landfall. Part Ⅰ:Topographic effects[J]. J. Atmos. Sci., 65 (10):3095-3115, doi: 10.1175/2008JAS2453.1.
    [53] Yang M J, Braun S A, Chen D S. 2011. Water budget of typhoon Nari (2001)[J]. Mon. Wea. Rev., 139 (12):3809-3828, doi: 10.1175/MWR-D-10-05090.1.
    [54] Yu Z F, Yu H, Chen P Y, et al. 2009. Verification of tropical cyclone-related satellite precipitation estimates in mainland China[J]. J. Appl. Meteor. Climatol., 48 (11):2227-2241, doi: 10.1175/2009JAMC2143.1.
    [55] 赵坤, 周仲岛, 胡东明, 等. 2007.派比安台风(0606)登陆期间雨带中尺度结构的双多普勒雷达分析[J].南京大学学报(自然科学), 43 (6):606-620. doi: 10.3321/j.issn:0469-5097.2007.06.006

    Zhao Kun, Zhou Zhongdao, Hu Dongming, et al. 2007. The rainband structure of typhoon Paibian (0606) during its landfall from dual-Doppler radar observations[J]. Journal of Nanjing University (Natural Sciences), 43 (6):606-620, doi: 10.3321/j.issn:0469-5097.2007.06.006.
    [56] 郑庆林, 吴军, 蒋平. 1996.我国东南海岸线分布对9216号台风暴雨增幅影响的数值研究[J].热带气象学报, 12 (4):304-313. http://www.oalib.com/paper/5076098

    Zheng Qinglin, Wu Jun, Jiang Ping. 1996. Numerical study on the effect of the distribution of the southeast sealine of China on the amplifying of the torrential rain of the landing typhoon 9216[J]. Journal of Tropical Meteorology, 12 (4):304-313. http://www.oalib.com/paper/5076098
    [57] 周冠博, 崔晓鹏, 高守亭. 2012.台风"凤凰"登陆过程的高分辨率数值模拟及其降水的诊断分析[J].大气科学, 36 (1):23-34. doi: 10.3878/j.issn.1006-9895.2012.01.03

    Zhou Guanbo, Cui Xiaopeng, Gao Shouting. 2012. The high-resolution numerical simulation and diagnostic analysis of the landfall process of typhoon "Fungwong"[J]. Chinese J. Atmos. Sci., 36 (1):23-34, doi: 10.3878/j.issn.1006-9895.2012.01.03.
    [58] Zhou Y S, Li X F, Gao S T. 2014. Precipitation efficiency and its relationship to physical factors[J]. Chinese Physics B, 23 (6):064210, doi: 10.1088/1674-1056/23/6/064210.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2111
  • HTML全文浏览量:  1
  • PDF下载量:  1810
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-21
  • 网络出版日期:  2017-04-25
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回