Design of Non-hydrostatic AREM Model and Its Numerical Simulation Part Ⅱ: Numerical Simulation Experiments
-
摘要: 在程锐等(2018)中,我们完成了非静力AREM(Advanced Regional Eta-coordinate Model)模式动力框架设计。本文将通过理想和实例试验检验其模拟能力。设计理想试验并通过与国际成熟的中尺度非静力框架比较,直接检验非静力AREM三维动力框架在细致分辨率(约1 km)下的模拟性能。可以看出,非静力AREM与ARPS(Advanced Regional Prediction System)、WRF(Weather Research and Forecasting Model)模拟出类似的积云对流结构及演变特征,从而基本确证了本文发展的非静力框架的正确性。结合原静力平衡模式的初始化和物理参数化过程,形成非静力AREM模式系统。台风实例模拟表明,粗分辨率下静力、非静力AREM模式性能接近;但在高分辨率下,非静力明显优于静力模式。我们还开展了批量降水试验检验,对非静力AREM模式性能进行了进一步的验证。Abstract: The design of non-hydrostatic core for Advanced Regional Eta-coordinate Model (AREM) has been presented in Cheng et al. (2018). The non-hydrostatic AREM is tested through the idealized and real-data numerical experiments in the present part. Firstly, the authors carry out high resolution idealized simulation (about 1 km) and compare the non-hydrostatic core of AREM with advanced non-hydrostatic frames, which are commonly used for research and operational forecasting. It can be seen that non-hydrostatic cores of AREM, Advanced Regional Prediction System (ARPS) and Weather Research and Forecasting Model (WRF) yield similar structural and evolutional features of convection, which basically proves the soundness and validity of the non-hydrostatic dynamic core of AREM. In association with the existing initialization techniques and physical packages of current hydrostatic model, non-hydrostatic AREM has the capability of real-data simulation. The typhoon Rananim (2004) is then simulated using this nonhydrostatic model and results are verified against various observations. The results reveal that the non-hydrostatic AREM can reproduce the hydrostatic simulation at lower resolution (for example, 37 km) and it can outperform the hydrostatic version of AREM at finer resolution (for instance, 8 km). Finally, the non-hydrostatic version of AREM is evaluated through quantitative testing on the precipitation hindcasting in July of 2010.
-
图 5 WRF模拟的(a)对流成熟期垂直速度垂直剖面(单位:m s−1)及(b)对流中心垂直速度(单位:m s−1)演变
Figure 5. (a) The vertical cross section of vertical velocity (units:m s−1) along the convection center at the mature stage of convection and (b) time series of vertical velocity (units:m s−1) at the convection center simulated by WRF (Weather Research and Forecasting Model)
图 6 积分24 h (2004年8月12日00时)的850 hPa垂直速度(单位:cm s-1, 正值表示上升运动)分布:(a)非静力AREM; (b)静力平衡AREM。×表示台风中心, 下同
Figure 6. Vertical velocity (units:cm s−1, positive values represent updrafts) distributions at 850 hPa after 24-h simulation (0000 UTC 12 August 2004):(a) Non-hydrostatic AREM; (b) hydrostatic AREM.The sign "×" represents the typhoon center, the same below
图 8 2004年8月11日00时至12日00时AREM模式模拟的和观测的台风(a)路径及(b)中心海平面气压(单位:hPa)。OBS、AREMV3_8km、AREMV5_8km、AREMV5_15km分别表示观测、8 km(格距)静力平衡、8 km非静力平衡、15 km非静力平衡AREM的模拟结果
Figure 8. AREM-simulated and observed typhoon (a) track and (b) sea level pressure (units: hPa) at the typhoon center from 0000 UTC 11 August to 0000 UTC 12 August 2004. OBS, AREMV3_8km, AREMV5_8km, and AREMV5_15km represent observation, 8-km hydrostatic AREM, 8-km non-hydrostatic AREM, and 15-km non-hydrostatic AREM, respectively
图 9 积分9 h(2004年8月11日09时)的过台风中心涡度(单位:10-4 s-1)经向—垂直剖面:(a)8 km非静力AREM;(b)8 km静力平衡AREM;(c)JRA
Figure 9. Latitude–height cross sections of vorticity (units: 10-4 s-1) along the typhoon center after 9-h simulation (0900 UTC 11 August 2004): (a) 8-km non-hydrostatic AREM; (b) 8-km hydrostatic AREM; (c) JRA (Japanese Reanalysis) data
图 10 积分9 h(2004年8月11日09时)过台风中心垂直速度(单位:m s-1)经向—垂直剖面:(a)8 km非静力AREM;(b)8 km静力平衡AREM;(c)15 km非静力AREM
Figure 10. Latitude–height cross sections of vertical velocity (units: m s-1) along the typhoon center after 9-h simulation (0900 UTC 11 August 2004): (a) 8-km non-hydrostatic AREM; (b) 8-km hydrostatic AREM; (c) 15-km non-hydrostatic AREM
图 11 积分9 h(2004年8月11日0900 UTC)过台风中心水凝物含量(彩色阴影,单位:g kg-1)及环流(黑色带箭头线)经向—垂直剖面:(a)8 km非静力AREM;(b)8 km静力平衡AREM;(c)15 km非静力AREM
Figure 11. Latitude–height cross sections of hydrometeors content (shaded, units: g kg-1) and circulation (black lines with arrows) along the typhoon center after 9-h simulation (0900 UTC 11 August 2004): (a) 8-km non-hydrostatic AREM; (b) 8-km hydrostatic AREM; (c) 15-km non-hydrostatic AREM
图 12 2010年7月长江中下游及华南地区逐日降水的(a)BS评分和(b)TS评分。实线为静力,点线为非静力
Figure 12. (a) Bias scores (BS) and (b) threat scores (TS) for daily precipitation forecasts in the middle and lower reaches of the Yangtze River and South China in July 2010. The solid and dotted lines indicate hydrostatic and non-hydrostatic simulation, respectively
表 1 非静力AREM与ARPS动力框架试验方案
Table 1. Model configuration of non-hydrostatic AREM (Advanced Regional Eta-coordinate Model) and ARPS (Advanced Regional Prediction System) for dynamical core experiments
方案描述 初值特点 水平均一背景场分为21层,从1000 hPa到100 hPa;热泡扰动 模拟范围 水平范围约为100 km,垂直方向从地表到100 hPa 模拟分辨率 水平格距约为1 km,垂直方向分为20层 模拟步长 时步1 s 模拟时间 运行1800 s 边界处理 辐射侧边界条件,顶边界刚壁 地形处理 不考虑地形 物理过程 不考虑任何物理过程 表 2 AREM静力与非静力框架试验描述
Table 2. Model configuration of non-hydrostatic AREM and hydrostatic AREM for dynamical core experiments
方案描述 初值处理 1°×1° NCEP分析场作为初值,分为17层,从1000 hPa到10 hPa 边界条件 固定侧边界条件,刚体顶边界条件 模拟范围 纬向105°~145°E,经向5°~45°N,垂向从地表到10 hPa 模拟分辨率 水平格距约为37 km,垂向分为32层 模拟步长 时步30 s 模拟时段 2004年8月11日00时至8月12日00时 地形处理 不考虑地形 物理过程 不考虑任何物理过程 表 3 非静力AREM高分辨率模拟试验方案
Table 3. Model configuration for high resolution simulation of non-hydrostatic AREM
计算方案描述 初值处理 人造台风初值,分为26层,从1000 hPa到10 hPa 边界条件 固定侧边界条件,刚体顶边界条件 模拟范围 纬向115°~135°E,经向15°~35°N,垂向从地表到10 hPa 模拟分辨率 水平格距约为8 km,垂向分为32层 模拟步长 时步5 s 模拟时段 2004年8月11日00时至8月12日00时 地形处理 考虑实际地形和植被 物理过程 非局地行星边界层参数化,Wang云微物理参数化,Betts- Miller积云对流调整,简化的地表辐射能量平衡和地表通量计算 -
[1] Betts A K. 1986. A new convective adjustment scheme. Part Ⅰ:Observational and theoretical basis[J]. Quart. J. Roy. Meteor. Soc., 112 (473):677-691, doi: 10.1002/qj.49711247307. [2] 程锐, 宇如聪, 傅云飞, 等. 2009.台风"云娜"在近海强度变化及结构特征的数值研究. Ⅰ:云微物理参数化对云结构及降水特征的影响[J].气象学报, 67 (5):764-776. doi: 10.3321/j.issn:0577-6619.2009.05.009Cheng Rui, Yu Rucong, Fu Yunfei, et al. 2009. Numerical research on intensity change and structure feature of typhoon Rananim near shore. Ⅰ:Impact of cloud microphysical parameterization on cloud structure and precipitation features[J]. Acta Meteor. Sinica (in Chinese), 67 (5):764-776, doi: 10.3321/j.issn:0577-6619.2009.05.009. [3] 程锐, 宇如聪, 徐幼平, 等. 2018.非静力AREM模式设计及其数值模拟.Ⅰ:非静力框架设计[J].大气科学, 42 (6):1286-1296. doi: 10.3878/j.issn.1006-9895.1712.17200Cheng Rui, Yu Rucong, Xu Youping, et al. 2018. Design of non-hydrostatic AREM model and its numerical simulation. Part Ⅰ:Design of non-hydrostatic dynamic core[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42 (6):1286-1296, doi: 10.3878/j.issn.1006-9895.1712.17200. [4] Clark T L. 1977. A small-scale dynamic model using a terrain-following coordinate transformation[J]. J. Comput. Phys., 24 (2):186-215, doi: 10.1016/0021-9991(77)90057-2. [5] Dudhia J. 1993. A nonhydrostatic version of the Penn state-NCAR mesoscale model:Validation tests and simulation of an Atlantic cyclone and cold front[J]. Mon. Wea. Rev., 121 (5):1493-1513, doi:10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2. [6] Ghan S J, Lingaas J W, Schlesinger M E, et al. 1982. A documentation of the OSU two-level atmospheric general circulation model[R]. Report 61 Climate Research Institute, Oregon State University. [7] 韩慎友. 2009.非静力保真模式发展和测试[D].中国科学院大气物理研究所博士学位论文. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1623203Han Shenyou. 2009. The development and test of a nonhydrostatic fidelity model[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1623203 [8] Holtslag A A M, Boville B A. 1993. Local versus nonlocal boundary-layer diffusion in a global climate model[J]. J. Climate, 6 (10):1825-1842, doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2. [9] Janjic Z I, Gerrity J P Jr, Nickovic S. 2001. An alternative approach to nonhydrostatic modeling[J]. Mon. Wea. Rev., 129 (5):1164-1178, doi:10.1175/1520-0493(2001)129<1164:AAATNM>2.0.CO;2. [10] Low-Nam S, Davis C. 2001. Development of a tropical cyclone Bogussing scheme for the MM5 system[C]//Proceedings of the 11th PSU/NCAR Mesoscale Model Users' Workshop. Boulder, Colorado: PSU/NCAR, 130-134. [11] Skamarock W C, Klemp J B. 1994. Efficiency and accuracy of the Klemp-Wilhelmson time-splitting technique[J]. Mon. Wea. Rev., 122 (11):2623-2630, doi:10.1175/1520-0493(1994)122<2623:EAAOTK>2.0.CO;2. [12] Straka J M, Wilhelmson R B, Wicker L J, et al. 1993. Numerical solutions of a non-linear density current:A benchmark solution and comparisons[J]. International Journal for Numerical Methods in Fluids, 17 (1):1-22, doi: 10.1002/fld.1650170103. [13] Tripoli G J. 1992. A nonhydrostatic mesoscale model designed to simulate scale interaction[J]. Mon. Wea. Rev., 120 (7):1342-1359, doi:10.1175/1520-0493(1992)120<1342:ANMMDT>2.0.CO;2. [14] Wang Yuqing. 2001. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model:TCM3. Part Ⅰ:Model description and control experiment[J]. Mon. Wea. Rev., 129 (6):1370-1394, doi:10.1175/1520-0493(2001)129<1370:AESOTC>2.0.CO;2. [15] Wicker L J, Skamarock W C. 1998. A time-splitting scheme for the elastic equations incorporating second-order Runge-Kutta time differencing[J]. Mon. Wea. Rev., 126 (7):1992-1999, doi:10.1175/1520-0493(1998)126<1992:ATSSFT>2.0.CO;2. [16] 徐幼平. 2009. AREM载水预报框架的发展和评估[D].中国科学院大气物理研究所博士学位论文.Xu Youping. 2009. Development and evaluation on the water bearing prediction frame of AREM[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences. [17] 宇如聪. 1992.有限区域数值预报模式的设计及其对雅安天漏的数值预报试验[D].中国科学院大气物理研究所博士学位论文. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y301981Yu Rucong. 1992. Design of the limited area numerical weather prediction model with steep mountain and numerical experiments on "Ya-An-Tian-Lou"[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y301981 [18] 宇如聪. 1994a.一个η坐标有限区域数值预报模式对1993年中国汛期降水的实时预报试验[J].大气科学, 18 (3):284-292. doi: 10.3878/j.issn.1006-9895.1994.03.04Yu Rucong. 1994a. A test for numerical weather prediction of real-time for China flood season precipitation in 1993 by a regional η-coordinate model[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18 (3):284-292,doi: 10.3878/j.issn.1006-9895.1994.03.04. [19] 宇如聪. 1994b. LASG-REM对1994年中国汛期降水的实时预报试验[J].大气科学, 18 (S1):801-809. doi: 10.3878/j.issn.1006-9895.1994.z1.04Yu Rucong. 1994b. Real-time precipitation forecasting experiments in the summer China of 1994 by the LASG-REM[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18 (S1):801-809, doi: 10.3878/j.issn.1006-9895.1994.z1.04. [20] Yu Rucong. 1994. Two-step shape-preserving advection scheme[J]. Advances in Atmospheric Sciences, 11 (4):479-490, doi: 10.1007/BF02658169. [21] Yu Rucong. 1995. Application of a shape-preserving advection scheme to the moisture equation in an E-grid regional forecast model[J]. Advances in Atmospheric Sciences, 12 (1):13-19, doi: 10.1007/BF02661283. [22] 宇如聪, 徐幼平. 2004. AREM及其对2003年汛期降水的模拟[J].气象学报, 62 (6):715-724. doi: 10.3321/j.issn:0577-6619.2004.06.001Yu Rucong, Xu Youping. 2004. AREM and its simulations on the daily rainfall in summer in 2003[J]. Acta Meteor. Sinica (in Chinese), 62 (6):715-724, doi: 10.3321/j.issn:0577-6619.2004.06.001. [23] 宇如聪, 曾庆存, 彭贵康, 等. 1994."雅安天漏"研究. Ⅱ:数值预报试验[J].大气科学, 18 (5):535-551. doi: 10.3878/j.issn.1006-9895.1994.05.04Yu Rucong, Zeng Qingcun, Peng Guikang, et al. 1994. Research on "Ya-An-Tian-Lou". Part Ⅱ:Numerical trial forecasting[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18 (5):535-551, doi:10.3878/j.issn. 1006-9895.1994.05.04. [24] 宇如聪, 薛纪善, 徐幼平. 2004. AREMS中尺度暴雨数值预报模式系统[M].北京:气象出版社, 139-190.Yu Rucong, Xue Jishan, Xu Youping. 2004. An Advanced Regional Eta-coordinate Numerical Heavy-ran Prediction Model (AREM) System (AREMS) (in Chinese)[M]. Beijing:China Meteorological Press, 139-190. [25] Zeng Xubing, Zhao Ming, Dickinson R E. 1998. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data[J]. J. Climate, 11 (10):2628-2644, doi:10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2. -