高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华南地区春季平流层入侵对对流层低层臭氧影响的模拟研究

赵恺辉 包云轩 黄建平 张潇艳 刘诚 戚慧雯 许玮

赵恺辉, 包云轩, 黄建平, 张潇艳, 刘诚, 戚慧雯, 许玮. 华南地区春季平流层入侵对对流层低层臭氧影响的模拟研究[J]. 大气科学, 2019, 43(1): 75-86. doi: 10.3878/j.issn.1006-9895.1801.17224
引用本文: 赵恺辉, 包云轩, 黄建平, 张潇艳, 刘诚, 戚慧雯, 许玮. 华南地区春季平流层入侵对对流层低层臭氧影响的模拟研究[J]. 大气科学, 2019, 43(1): 75-86. doi: 10.3878/j.issn.1006-9895.1801.17224
Kaihui ZHAO, Yunxuan BAO, Jianping HUANG, Xiaoyan ZHANG, Cheng LIU, Huiwen QI, Wei XU. A Modeling Study of the Impact of Stratospheric Intrusion on Ozone Enhancement in the Lower Troposphere in South China[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 75-86. doi: 10.3878/j.issn.1006-9895.1801.17224
Citation: Kaihui ZHAO, Yunxuan BAO, Jianping HUANG, Xiaoyan ZHANG, Cheng LIU, Huiwen QI, Wei XU. A Modeling Study of the Impact of Stratospheric Intrusion on Ozone Enhancement in the Lower Troposphere in South China[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 75-86. doi: 10.3878/j.issn.1006-9895.1801.17224

华南地区春季平流层入侵对对流层低层臭氧影响的模拟研究

doi: 10.3878/j.issn.1006-9895.1801.17224
基金项目: 

国家自然科学基金项目 2081021506501

江苏省科技支撑计划项目 BE2014734

咸阳市重大科技计划项目 2017K01-35

详细信息
    作者简介:

    赵恺辉, 男, 1992年出生, 博士, 主要从事大气环境和空气质量数值模拟研究。E-mail:645746215@qq.com

    通讯作者:

    黄建平, E-mail:jianping.huang@noaa.gov

  • 中图分类号: P435

A Modeling Study of the Impact of Stratospheric Intrusion on Ozone Enhancement in the Lower Troposphere in South China

Funds: 

National Natural Science Foundation of China 2081021506501

Jiangsu Science and Technology Support Project BE2014734

Xianyang City Major Science and Technology Projects 2017K01-35

  • 摘要: 利用中尺度大气化学模式WRF/Chem对2013年3月6日华南地区一次平流层入侵事件及其对对流层低层臭氧的影响进行模拟研究。通过加入UBC(Upper Boundary Condition)上边界处理方案,弥补WRF/Chem模式未考虑平流层臭氧化学反应的不足。结合臭氧探空廓线资料、地面O3、CO、NOx、相对湿度、温度和风速等观测资料以及再分析资料对模拟结果进行定量评估,结果表明模式能较为真实地模拟本次平流层入侵过程。模拟分析进一步揭示:(1)副热带高空急流是本次平流层入侵的主要原因。当华南地区处在副热带急流入口区左侧下沉区域时,平流层入侵将富含臭氧的干燥空气输送到对流层中低层。(2)本次平流层入侵对对流层低层臭氧收支有重要影响,导致香港地区近地层臭氧体积混合比浓度明显上升,如塔门站夜间臭氧浓度升高21.3 ppb(1 ppb=1×10-9)。地面气象场和化学物种的分析进一步确认了平流层入侵的贡献。(3)采用动力学对流层顶高度时零维箱式模型和Wei公式计算得到的平流层入侵通量相当,分别为-1.42×10-3 kg m-2 s-1和-1.59×10-3 kg m-2 s-1,这一结果与前人研究相吻合,且与采用热力学对流层顶高度计算所得到的结果具有可比性。
  • 图  1  WRF/Chem模式模拟区域和四个地面空气质量监测站(黑点, 站点信息见表 3)、臭氧探空站(HKO, 红三角)位置

    Figure  1.  Triple-nested domains in the WRF/Chem (Weather Research and Forecasting model coupled with Chemistry), locations of four air quality monitoring sites (black dots, detailed descriptions are given in Table 3) and ozone sounding (HKO, red triangle) in Hong Kong

    图  2  2013年3月6日14时(当地标准时间)地面天气图(由香港天文台提供)

    Figure  2.  Surface weather chart (provided by Hong Kong Observatory) at 1400 LST (Local Standard Time)6 March 2013

    图  3  2013年3月6日14时(当地标准时间) GMS-5卫星(日本)云图和300~150 hPa高空散度场平均(等值线, 单位:10−5 s−1)水平分布。红色三角表示香港

    Figure  3.  The Japanese GMS-5(Geostationary Meteorological Satellite 5) retrieved cloud coverage (shaded areas) and mean divergence (contours, units:10−5 s−1) over 300-150 hPa at 1400 LST 6 March 2013.Red triangle: Hong Kong location

    图  4  2013年3月6日14时(北京时)香港(114.17°E)上空臭氧浓度(填色区, 单位:ppb)、风速(黑色细实线, 单位:m s−1)、位温(黑色虚线, 单位:K)、对流层顶高度(黑色粗实线)的纬度-气压垂直剖面:(a) WRF/Chem模拟; (b) ECMWF再分析资料

    Figure  4.  Latitude-pressure cross sections of ozone concentration (color shadings, units:ppb), wind speed (thin black solid lines, units:m s−1), potential temperature (black dashed lines, units:K), and the height of the tropopause (bold black lines) at Hong Kong (114.17°E) at 1400 BJT (Beijing time)6 March 2013:(a) WRF/Chem simulations; (b) ECMWF reanalysis data

    图  5  2013年3月6日14时(北京时)300 hPa高度上(a) WRF/Chem模式模拟、(b) ECMWF再分析资料的臭氧浓度(填色区, 单位:ppb)和位势涡度(黑色等值线, 单位:PVU)

    Figure  5.  Ozone concentration (color shadings, units:ppb) and potential vorticity (black contours, units:PVU) at 300 hPa at 1400 BJT 6 March 2013:(a) WRF/Chem simulations; (b) ECMWF reanalysis data

    图  6  2013年3月6日14时(北京时)300 hPa高度上(a) WRF/Chem模式模拟、(b) ECMWF再分析资料的相对湿度(填色)、风场(风向杆)和位势高度场(黑色等值线, 单位:gpm)

    Figure  6.  Relative humidity (color shadings), wind speed (barbs, units:m s−1), and geopotential height (contours, units:gpm) at 300 hPa at 1400 BJT 6 March 2013:(a) WRF/Chem simulations; (b) ECMWF reanalysis data

    图  7  2013年3月6日14时(当地标准时间)香港的(a)温度(单位:℃)、(b)相对湿度、(c)风速(单位:m s−1)、(d)臭氧浓度(单位:ppb) WRF/Chem模式模拟和探空观测的对比。实线:观测值; 虚线:WRF/Chem模式模拟值

    Figure  7.  Comparison of WRF/Chem simulations with observed (a) temperature (units:℃), (b) relative humidity, (c) wind speed (units:m s−1), and (d) ozone concentration (units:ppb) in Hong Kong at 1400 LST 6 March 2013

    图  8  2013年3月5~6日模拟(虚线)地面臭氧浓度(单位:ppb)与实测值(实线)对比:(a)沙田站; (b)塔门站; (c)大埔站; (d)东涌站

    Figure  8.  Simulated (dashed lines) and observed (solid lines) surface ozone concentrations (units:ppb) during 5-6 March 2013 at (a) Sha Tin station, (b) Tap Mun station, (c) Tai Po station, and (d) Tung Chung station

    图  9  2013年3月5~6日WRF/Chem模式模拟(虚线)与实测值(实线)塔门站的地面(a)相对湿度、(b)风速、(c) NOx浓度、(d) CO浓度逐小时变化

    Figure  9.  Simulated (dashed lines) and observed (solid lines) surface parameters at Tap Mun station during 5-6 March 2013:(a) Relative humidity; (b) wind speed; (c) NOx concentration, (d) CO concentration

    表  1  WRF/Chem模式参数化方案设置

    Table  1.   Parameterization schemes selected in the WRF/ Chem model

    物理过程及化学机理 使用的参数化方案
    微物理 Lin Microphysics
    短波辐射 Goddard
    陆面过程 Noah Land Surface Model
    长波辐射 Rapid Radiative Transfer Model
    边界层 Yonsei University Planetary
    气态化学机理 RADM2
    光解速率系数 Fast-J Photolysis
    下载: 导出CSV

    表  2  臭氧浓度、相对湿度、风速、温度垂直廓线的WRF/ Chem模式模拟与观测的相关系数(R)、显著性水平(P)、均方根误差(RMSE)、平均偏差(MB)

    Table  2.   Correlation coefficient (R), significance level (P), root-mean-square error (RMSE), and mean bias (MB) between WRF/Chem simulated and observed ozone concentration profile, relative humidity profile, wind speed profile, temperature profile

    相关系数
    R
    显著性水平
    P
    均方根误差
    (RMSE)
    平均偏差
    (MB)
    臭氧垂直廓线 0.73 <0.0001 22.4 ppb 10.3 ppb
    相对湿度垂直廓线 0.76 <0.0001 21% −8.2%
    风速垂直廓线 0.9638 <0.0001 4.9 m s−1 −1.7 m s−1
    温度垂直廓线 0.998 <0.0001 2.8℃ 2.2℃
    下载: 导出CSV

    表  3  沙田站、塔门站、大埔站、东涌站的海拔高度以及4个站点的臭氧浓度WRF/Chem模式模拟结果与观测的相关系数(R)、显著性水平(P)、均方根误差(RMSE)、平均偏差(MB)

    Table  3.   The height of Sha Tin, Tap Mun, Tai Po, Tung Chung stations and the correlation coefficient (R), significance level (P), root-mean-square error (RMSE), and mean bias (MB) between WRF/Chem simulated and observed ozone concentration at four stations

    海拔高度/m 相关系数(R 显著性水平(P 均方根误差(RMSE)/ppb 平均偏差(MB)/ppb
    沙田站 6 0.69 <0.0001 13.2 −7.1
    塔门站 24 0.69 <0.0001 13.8 9
    大埔站 15 0.76 <0.0001 18.7 −16.2
    东涌站 46 0.72 <0.0001 22.1 −19.6
    下载: 导出CSV

    表  4  香港地区WRF/Chem模式模拟的地面相对湿度、风速、NOx浓度、CO浓度与观测的相关系数(R)、显著性水平(P)、均方根误差(RMSE)、平均偏差(MB)

    Table  4.   Correlation coefficient (R), significance level (P), root-mean-square error (RMSE), and mean bias (MB) between WRF/Chem simulated and observed relative humidity, wind speed, NOx concentration, and CO concentration

    相关系数
    R
    显著性水平
    P
    均方根误差
    (RMSE)
    平均偏差
    (MB)
    相对湿度 0.93 <0.0001 6.90% −2.0%
    风速 0.7 <0.0001 1.1 m s−1 0.3 m s−1
    NOx浓度 0.58 <0.0001 1.9 ppb 0.7 ppb
    CO浓度 0.9 <0.0001 6.9 ppb 5.0 ppb
    下载: 导出CSV

    表  5  基于不同对流层顶高度、时间、底面积下的平均瞬时STE通量计算结果的对比。改自崔宏等(2004)

    Table  5.   Comparison of the mean instantaneous STE fluxes with different tropopause height, time, and base area. Adapted from Cui et al. (2004)

    对流层顶高度/PVU 时间/ d 底面积/ km2 平均瞬时STE通量/10−3 kg m−2 s−1
    Lamarque and Hess (1994) 2 4 3.2×106 −0.4
    Spaete et al.(1994) 3 1 1×106 −3.5
    Wirth (1995) 2 3 8×105 −3.5
    Ebel et al.(1996) 3 1.96 2.25×105 −1.4
    杨健和吕达仁(2003) 3.5 3.54 2.5×106 −0.49
    崔宏等(2004) 2 6 1.53×107 −1.125
    箱式模型(本文研究) 1 1 1.04×104 −1.59
    Wei公式(本文研究) 1 1 1.04×104 −1.42
    下载: 导出CSV
  • [1] Barth M C, Lee J, Hodzic A, et al. 2012. Thunderstorms and upper troposphere chemistry during the early stages of the 2006 North American monsoon[J]. Atmospheric Chemistry and Physics, 12:11003-11026, doi: 10.5194/acp-12-11003-2012.
    [2] Bey I, Jacob D J, Logan J A, et al. 2001. Asian chemical outflow to the Pacific in spring:Origins, pathways, and budgets[J]. J. Geophys. Res., 106:23097-23113, doi: 10.1029/2001JD000806.
    [3] Chameides W L, Li X S, Tang X Y, et al. 1999. Is ozone pollution affecting crop yields in China?[J]. Geophys. Res. Lett., 26:867-870, doi: 10.1029/1999GL900068.
    [4] Chan L Y, Chan C Y, Liu H Y, et al. 2000. A case study on the biomass burning in Southeast Asia and enhancement of tropospheric ozone over Hong Kong[J]. Geophys. Res. Lett., 27:1479-1482, doi: 10.1029/1999GL010855.
    [5] 崔宏, 赵春生, 秦瑜, 等. 2004.一次平流层-对流层交换过程中臭氧通量的估算[J].科学通报, 49:506-513. doi: 10.3321/j.issn:0023-074X.2004.05.018

    Cui Hong, Zhao Chunsheng, Qin Yu, et al. 2004. An estimation of ozone flux in a stratosphere-troposphere exchange event[J]. Chinese Science Bulletin, 49:167-174, doi: 10.3321/j.issn:0023-074X.2004.05.018.
    [6] 崔宏, 赵春生, 郑向东, 等. 2005. 2001年春季临安地区对流层臭氧异常增加的一次过程分析[J].大气科学, 29:259-266. doi: 10.3878/j.issn.1006-9895.2005.02.10

    Cui Hong, Zhao Chunsheng, Zheng Xiangdong, et al. 2005. Analysis of an extraordinary tropospheric ozone enhancement event at Lin-An in the spring of 2001[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29:259-266, doi: 10.3878/j.issn.1006-9895.2005.02.10.
    [7] Danielsen E F. 1968. Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity[J]. J. Atmos. Sci., 25:502-518, doi:10.1175/1520-0469(1968)025<0502:STEBOR> 2.0.CO; 2.
    [8] Dickerson R R, Doddridge B G, Kelley P, et al. 1995. Large-scale pollution of the atmosphere over the remote Atlantic Ocean:Evidence from Bermuda[J]. J. Geophys. Res., 100:8945-8952, doi: 10.1029/95JD00073.
    [9] Ding A J, Wang T, Fu C B. 2013. Transport characteristics and origins of carbon monoxide and ozone in Hong Kong, South China[J]. J. Geophys. Res., 118:9475-9488, doi: 10.1002/jgrd.50714.
    [10] Emmons L K, Apel E C, Lamarque J F, et al. 2010. Impact of Mexico City emissions on regional air quality from MOZART-4 simulations[J]. Atmospheric Chemistry and Physics, 10:6195-6212, doi: 10.5194/acp-10-6195-2010.
    [11] Ebel A, Elbern H, Hendricks J, et al. 1996. Stratosphere-troposphere exchange and its impact on the structure of the lower stratosphere[J]. Journal of geomagnetism and geoelectricity, 48 (1):135-144. doi: 10.5636/jgg.48.135
    [12] Fishman J, Crutzen P J. 1978. The origin of ozone in the troposphere[J]. Nature, 274:855-858, doi: 10.1038/274855a0.
    [13] Grell G A, Peckham S E, Schmitz R, et al. 2005. Fully coupled "online" chemistry within the WRF model[J]. Atmos. Environ., 39:6957-6975, doi: 10.1016/j.atmosenv.2005.04.027.
    [14] Hegglin M I, Shepherd T G. 2009. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux[J]. Nature Geoscience, 2:687-691, doi: 10.1038/ngeo604.
    [15] Jacob D J, Logan J A, Murti P P. 1999. Effect of rising Asian emissions on surface ozone in the United States[J]. Geophys. Res. Lett., 26:2175-2178, doi: 10.1029/1999GL900450.
    [16] Kim J H, Lee H. 2010. What causes the springtime tropospheric ozone maximum over Northeast Asia?[J] Advances in Atmospheric Sciences, 27:543-551, doi: 10.1007/s00376-009-9098-z.
    [17] Lamarque J F, Hess P G. 1994. Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding[J]. J. Atmos. Sci., 51:2246-2269, doi:10.1175/1520-0469(1994)051<2246:CTMEAP> 2.0.CO; 2.
    [18] Langford A O, Brioude J, Cooper O R, et al. 2012. Stratospheric influence on surface ozone in the Los Angeles area during late spring and early summer of 2010[J]. J. Geophys. Res., 117:D00V06, doi: 10.1029/2011JD016766.
    [19] Lei Y, Zhang Q, Nielson C, et al. 2011. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990-2020[J]. Atmos. Environ., 55:147-154, doi:10.1016/j.atmosenv.2010. 09.034.
    [20] 李丹, 卞建春, 范秋君. 2014.东亚一次典型切断低压引起的平流层空气深入侵过程的分析[J].中国科学:地球科学, 44:2315-2327. doi: 10.1007/s11430-014-4977-2

    Li Dan, Bian Jianchun, Fan Qiujun. 2014. A deep stratospheric intrusion associated with an intense cut-off low event over East Asia[J]. Science China Earth Sciences, 58:116-128, doi: 10.1007/s11430-014-4977-2.
    [21] Li J F, Lu K D, Li J, et al. 2014. Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006-2011[J]. Journal of Environmental Sciences, 26:23-36, doi: 10.1016/S1001-0742(13)60377-0.
    [22] Li M, Zhang Q, Kurokawa J, et al. 2015. MIX:A mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects[J]. Atmospheric Chemistry and Physics, 15:34813-34869, doi: 10.5194/acpd-15-34813-2015.
    [23] Li Q B, Jacob D J, Fairlie T D, et al. 2002. Stratospheric versus pollution influences on ozone at Bermuda:Reconciling past analyses[J]. J. Geophys. Res., 107:ACH 1-1-ACH 1-16, doi: 10.1029/2002JD002138.
    [24] Lin M Y, Fiore A M, Cooper O R, et al. 2012. Springtime high surface ozone events over the western United States:Quantifying the role of stratospheric intrusions[J]. J. Geophys. Res., 117:D00V22, doi: 10.1029/2012JD018151.
    [25] Lin M Y, Fiore A M, Horowitz L W, et al. 2015. Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions[J]. Nature Communications, 6:7105. doi: 10.1038/ncomms8105
    [26] Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model[J]. J. Climate Appl. Meteor., 22:1065-1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF> 2.0.CO; 2.
    [27] Liu H Y, Jacob D J, Chan L Y, et al. 2002. Sources of tropospheric ozone along the Asian Pacific Rim:An analysis of ozonesonde observations[J]. J. Geophys. Res, 107:ACH 3-1-ACH 3-19, doi: 10.1029/2001JD002005.
    [28] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. J. Geophys. Res., 102:16663-16682, doi: 10.1029/97JD00237.
    [29] Moeng C H, Sullivan P P, Stevens B. 1999. Including radiative effects in an entrainment rate formula for buoyancy-driven PBLs[J]. J. Atmos. Sci., 56:1031-1049, doi:10.1175/1520-0469(1999)056<1031:IREIAE> 2.0.CO; 2.
    [30] NRC. 1991. Rethinking the Ozone Problem in Urban and Regional Air Pollution[M]. New York:National Academies Press.
    [31] Oltmans S J, Johnson B J, Harris J M, et al. 2004. Tropospheric ozone over the North Pacific from ozonesonde observations[J]. J. Geophys. Res., 109:D15S01, doi: 10.1029/2003JD003466.
    [32] Penkett S A, Evans M J, Reeves C E, et al. 2004. Long-range transport of ozone and related pollutants over the North Atlantic in spring and summer[J]. Atmospheric Chemistry and Physics, 4:4407-4454, doi: 10.5194/acpd-4-4407-2004.
    [33] 戚慧文, 包云轩, 黄建平, 等. 2018.夹卷对郊外大气边界层内臭氧影响的数值模拟研究[J].热带气象学报, 34 (5):713-720. doi: 10.10632/j.issn.1004-4965.2018.05.013

    Qi Huiwen, Bao Yunxuan, Huang Jianping, et al. 2018. Numerical simulation for impact of entrainment on ozone concentration in the rural atmospheric boundary layer[J]. Journal of Tropical Meteorology, 34 (5):713-720, doi: 10.10632/j.issn.1004-4965.2018.05.013.
    [34] Reiter E R. 1975. Stratospheric-tropospheric exchange processes[J]. Rev. Geophys., 13:459-474, doi: 10.1029/RG013i004p00459.
    [35] Reiter R, Kanter H J, Sladkovic R. 1975. Measurement of airborne radioactivity and its meteorological application.[Air mass exchange between stratosphere and troposphere measured using cosmic-produced radionuclides as tracers] [R]. Technical Report.
    [36] Safieddine S, Boynard A, Coheur P F, et al. 2014. Summertime tropospheric ozone assessment over the Mediterranean region using the thermal infrared IASI/MetOp sounder and the WRF-Chem model[J]. Atmospheric Chemistry and Physics, 14:10119-10131, doi: 10.5194/acp-14-10119-2014.
    [37] Shapiro M A. 1976. The role of turbulent heat flux in the generation of potential vorticity in the vicinity of upper-level jet stream systems[J]. Mon. Wea. Rev., 104:892-906, doi:10.1175/1520-0493(1976)104<0892:TROTHF> 2.0.CO; 2.
    [38] Shapiro M A. 1980. Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere[J]. J. Atmos. Sci., 37:994-1004, doi:10. 1175/1520-0469(1980)037<0994:TMWTFA> 2.0.CO; 2.
    [39] Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A description of the advanced research WRF version 2[R]. NCAR Technical Note, NCAR/TN-468+STR.
    [40] Spaete P, Johnson D R, Schaack T K. 1994. Stratospheric-tropospheric mass exchange during the President's Day storm[J]. Mon. Wea. Rev., 121:127-147 http://cn.bing.com/academic/profile?id=d58bb4cf5a038d4c0c6e79a04cc96f54&encoded=0&v=paper_preview&mkt=zh-cn
    [41] Stockwell W R, Middleton P, Chang J S, et al. 1990. The second generation regional acid deposition model chemical mechanism for regional air quality modeling[J]. J. Geophys. Res., 951:16343-16367, doi: 10.1029/JD095iD10p16343.
    [42] Suarex M J, Chou M D. 1994. An efficient thermal infrared radiation parameterization for use in general circulation models[C]//Technical Report Series on Global Modeling and Data Assimilation. Greenbelt: National Aeronautics and Space Administration, 3: 1603-1609.
    [43] Sudo K, Takahashi M, Akimoto H. 2003. Future changes in stratosphere-troposphere exchange and their impacts on future tropospheric ozone simulations[J]. Geophys. Res. Lett., 30:2256, doi: 10.1029/2003GL018526.
    [44] Wang T, Wei X L, Ding A J, et al. 2009. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007[J]. Atmos. Chem. Phys., 9:6217-6227, doi: 10.5194/acp-9-6217-2009.
    [45] Wei M Y. 1987. A new formulation of the exchange of mass and trace constituents between the stratosphere and troposphere[J]. J. Atmos. Sci., 44:3079-3086, doi:10.1175/1520-0469(1987)044<3079:ANFOTE> 2.0.CO; 2.
    [46] Wild O, Zhu X, Prather M J. 2000. Fast-J:Accurate simulation of in-and below-cloud photolysis in tropospheric chemical models[J]. J. Atmos. Chem., 37:245-282, doi: 10.1023/A:1006415919030.
    [47] Wirth V. 1995. Comments on "a new formulation of the exchange of mass and trace constituents between the stratosphere and troposphere"[J]. J. Atmos. Sci., 52:2491-2493, doi:10.1175/1520-0469(1995)052<2491:CONFOT> 2.0.CO; 2.
    [48] 熊秋菊, 唐孝炎, 毕木天. 1984.大气污染物对平流层臭氧的影响[J].环境化学, (5):19-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000587938

    Xiong Qiuju, Tang Xiaoyan, Bi Mutian, et al. 1984. Effects of air pollutants on stratospheric ozone (in Chinese)[J]. Environmental Chemistry (in Chinese), (5):19-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000587938
    [49] 许平平, 田文寿, 张健恺, 等. 2015.春季青藏高原西北侧一次平流层臭氧向对流层传输的模拟研究[J].气象学报, 73:529-545. doi: 10.11676/qxxb2015.037

    Xu Pingping, Tian Wenshou, Zhang Jiankai, et al. 2015. A simulation study of the transport of the stratospheric ozone to the troposphere over the northwest side of the Tibetan Plateau in spring[J]. Acta Meteorologica Sinica (in Chinese), 73:529-545, doi: 10.11676/qxxb2015.037.
    [50] 杨健, 吕达仁. 2003.东亚地区一次切断低压引起的平流层、对流层交换数值模拟研究[J].大气科学, 27:1031-1044. doi: 10.3878/j.issn.1006-9895.2003.06.07

    Yang Jian, Lü Daren. 2003. A simulation study of stratosphere-troposphere exchange due to cut-off-low over eastern Asia[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27:1031-1044, doi: 10.3878/j.issn.1006-9895.2003.06.07.
    [51] 郑永光, 陈炯, 陈尊裕, 等. 2008.中国南部对流层中上层臭氧增加的气象场判识及臭氧变化的多尺度特征[J].地球物理学报, 51:668-681. doi: 10.3321/j.issn:0001-5733.2008.03.008

    Zheng Yongguang, Chen Jiong, Chen Zunyu, et al. 2008. Identifying method of ozone enhancement and multi-scale characteristics of ozone change in the mid-upper troposphere over South China[J]. Chinese Journal of Geophysics (in Chinese), 51:668-681, doi: 10.3321/j.issn:0001-5733.2008.03.008.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  812
  • HTML全文浏览量:  3
  • PDF下载量:  967
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-30
  • 网络出版日期:  2018-01-16
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回