高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Runge-Kutta算法与Li差分法不同阶数配合对计算精度影响研究

王鹏飞 楚苹瓖 王立志 周任君 黄刚

王鹏飞, 楚苹瓖, 王立志, 周任君, 黄刚. Runge-Kutta算法与Li差分法不同阶数配合对计算精度影响研究[J]. 大气科学, 2019, 43(1): 99-106. doi: 10.3878/j.issn.1006-9895.1805.17238
引用本文: 王鹏飞, 楚苹瓖, 王立志, 周任君, 黄刚. Runge-Kutta算法与Li差分法不同阶数配合对计算精度影响研究[J]. 大气科学, 2019, 43(1): 99-106. doi: 10.3878/j.issn.1006-9895.1805.17238
Pengfei WANG, Pingxiang CHU, Lizhi WANG, Renjun ZHOU, Gang HUANG. A Study on the Precision of Runge-Kutta Method with Various Orders of Li Difference Scheme[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 99-106. doi: 10.3878/j.issn.1006-9895.1805.17238
Citation: Pengfei WANG, Pingxiang CHU, Lizhi WANG, Renjun ZHOU, Gang HUANG. A Study on the Precision of Runge-Kutta Method with Various Orders of Li Difference Scheme[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 99-106. doi: 10.3878/j.issn.1006-9895.1805.17238

Runge-Kutta算法与Li差分法不同阶数配合对计算精度影响研究

doi: 10.3878/j.issn.1006-9895.1805.17238
基金项目: 

国家自然科学基金项目 41530426

国家自然科学基金项目 41375112

详细信息
    作者简介:

    王鹏飞, 男, 1973年生, 博士, 高级工程师, 主要从事数值分析、并行计算、非线性可预报性等方面的研究。E-mail:wpf@mail.iap.ac.cn

  • 中图分类号: P435

A Study on the Precision of Runge-Kutta Method with Various Orders of Li Difference Scheme

Funds: 

National Natural Science Foundation of China 41530426

National Natural Science Foundation of China 41375112

  • 摘要: 为了充分发挥高阶Li空间微分方案(Li, 2005)的优点,实现了时间积分为2~6阶Runge-Kutta(简称RK)格式的偏微分方程求解算法(简称RKL算法)。然后通过多组数值试验,研究了时间积分阶数对计算误差的影响。线性平流方程的试验结果表明对于方波函数型初值,2、4、5和6阶RK算法能获得和3阶精度差不多的结果,而对于高斯函数型的初值,高阶RKL算法可以取得较好的计算效果。RK为5(6)阶时,对应的Li微分阶数可达9(10)阶,总误差控制在10-7(10-8)以内。随RK阶数增加Li微分有效阶数有增加的趋势,而总误差在逐渐减小。计算非线性无粘Burgers方程时,RKL算法能否获得好的计算结果,除了受初始场形式的影响,还与计算的目标时刻有关。当目标时刻解的各阶导数连续(且未出现无穷大数值时),高阶(RK为4~6阶)算法是有效的;若出现了导数间断、或导数为无穷大,就会碰到冲击波解类型的问题,此时高阶RK算法也无法获得很高精度的数值解。此非线性的算例中,Li微分阶数仍然随RK阶数增加而增加,但增加的趋势不是线性的,具体变化关系可以通过实验结果拟合而获得。研究发现时间积分方案阶数大于3之后,对应的最优空间差分精度阶数可以比6阶提高很多,这再次证明了以前研究中6阶以上空间差分格式对结果无改进的现象,是由于没有使用足够高精度的时间积分方案引起的。相比于Taylor-Li(Wang,2017)算法,5~6阶的RK方法编程和实现简单,计算结果的精度比3阶算法要提高很多,因此,它是一种能够对复杂方程适用的简易高阶算法方案,具有一定的实用价值。
  • 图  1  RKL(Runge-Kutta-Li)方法的线性平流试验:(a)Gauss波初始场;(b)计算误差随空间精度阶数的变化。(b)中横坐标为空间精度阶数,纵坐标为误差取对数(log10),粉、蓝、红、绿、黑色分别代表时间精度为2、3、4、5、6阶

    Figure  1.  The experiments of linear advection equation by RKL (Runge-Kutta-Li) method: (a) Gaussian-type initial condition; (b) error versus spatial difference order. In (b), the abscissa is the spatial difference order, the ordinate is the logarithm of the error (log10), and the purple, blue, red, green and black curves denote the second-order, third-order, fourth-order, fifth-order and sixth-order time-integration schemes, respectively

    图  2  RKL方法的无粘性Burgers方程试验:(a)t=0时的初始场;(b)t=0.8时u的理论解;(c)计算误差随空间精度阶数的变化。(c)中横坐标为空间精度阶数,纵坐标为误差取对数(log10),粉、蓝、红、绿、黑色分别代表时间精度为2、3、4、5、6阶

    Figure  2.  The experiments of the nonlinear Burgers' equation by RKL method: (a) Initial u at t=0; (b) analytical solution of u at t=0.8; (c) error versus spatial difference order. In (c), the abscissa is the spatial difference order and the ordinate is the logarithm of error (log10); purple, blue, red, green and black curves correspond to the second-order, third-order, fourth-order, fifth-order and sixth-order time-integration schemes, respectively

  • [1] Butcher J C. 2008. Numerical Methods for Ordinary Differential Equations[M]. 2nd ed. England:John Wiley & Sons, 463pp.
    [2] 陈显尧, 宋振亚, 赵伟, 等. 2008.气候模式系统模拟结果的不确定性分析[J].海洋科学进展, 26 (2):119-125. doi: 10.3969/j.issn.1671-6647.2008.02.001

    Chen Xianyao, Song Zhenya, Zhao Wei, et al. 2008. Uncertainity analysis of results simulated by climate model system[J]. Advances in Marine Science (in Chinese), 26 (2):119-125, doi: 10.3969/j.issn.1671-6647.2008.02.001.
    [3] 冯涛, 李建平. 2007.高精度迎风偏斜格式的比较与分析[J].大气科学, 31 (2):245-253. doi: 10.3878/j.issn.1006-9895.2007.02.06

    Feng Tao, Li Jianping. 2007. A comparison and analysis of high order upwind-biased schemes[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (2):245-253, doi:10.3878/j.issn.1006-9895. 2007.02.06.
    [4] Hairer E, Nørsett S P, Wanner G. 2000. Solving Ordinary Differential Equations I:Nonstiff Problems[M]. Berlin Heidelberg:Springer, 528pp.
    [5] Hopf E. 1950. The partial differential equation ut + uux=μxx[J]. Commun. Pure Appl. Math., 3 (3):201-230, doi: 10.1002/cpa.3160030302.
    [6] 季仲贞, 王斌. 1994.一类高时间差分精度的平方守恒格式的构造及其应用检验[J].自然科学进展, 4 (2):149-157. doi: 10.3321/j.issn:1002-008X.1994.02.004

    Ji Zhongzhen, Wang Bin. 1994. Construction and application test of a kind of high precision scheme with square-conservation[J]. Progress in Natural Science (in Chinese), 4 (2):149-157. doi: 10.3321/j.issn:1002-008X.1994.02.004
    [7] 季仲贞, 李京, 王斌. 1999.紧致平方守恒格式的构造和检验[J].大气科学, 23 (3):323-332. doi: 10.3878/j.issn.1006-9895.1999.03.08

    Ji Zhongzhen, Li Jing, Wang Bin. 1999. Construction and test of compact scheme with square-conservation[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23 (3):323-332, doi: 10.3878/j.issn.1006-9895.1999.03.08.
    [8] Lele S K. 1992. Compact finite difference schemes with spectral-like resolution[J]. J. Comput. Phys., 103 (1):16-42, doi:10.1016/0021-9991 (92)90324-R.
    [9] Li J P. 2005. General explicit difference formulas for numerical differentiation[J]. J. Comput. Appl. Math., 183 (1):29-52, doi: 10.1016/j.cam.2004.12.026.
    [10] Li J P, Zeng Q C, Chou J F. 2000. Computational uncertainty principle in nonlinear ordinary differential equations (I)——Numerical results[J]. Science in China (Series E), 43 (5):449-460.
    [11] Liao S J. 2009. On the reliability of computed chaotic solutions of non-linear differential equations[J]. Tellus A, 61 (4):550-564, doi: 10.1111/j.1600-0870.2009.00402.x.
    [12] Ma Y W, Fu D X. 1996. Super compact finite difference method (SCFDM) with arbitrary high accuracy[J]. Comput. Fluid Dyn. J., 5 (2):, 259-276.
    [13] Mastrandrea M D, Field C B, Stocker T F, et al. 2010. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties[C]. Jasper Ridge, CA, USA: Intergovernmental Panel on Climate Change.
    [14] Takacs L L. 1985. A two-step scheme for the advection equation with minimized dissipation and dispersion errors[J]. Mon. Wea. Rev., 113 (6):1050-1065, doi:10.1175/1520-0493(1985)113<1050:ATSSFT<2.0.CO;2.
    [15] Tal-Ezer H. 1986. Spectral methods in time for hyperbolic equations[J]. SIAM J. Numer. Anal., 23 (1):11-26, doi: 10.1137/0723002.
    [16] Tal-Ezer H. 1989. Spectral methods in time for parabolic problems[J]. SIAM J. Numer. Anal., 26 (1):1-11, doi: 10.1137/0726001.
    [17] Teixeira J, Reynolds C A, Judd K. 2007. Time step sensitivity of nonlinear atmospheric models:Numerical convergence, truncation error growth, and ensemble design[J]. J. Atmos. Sci., 64 (1):175-189, doi: 10.1175/JAS3824.1.
    [18] Von Neumann J, Goldstine H H. 1947. Numerical inverting of matrices of high order[J]. Bull. Amer. Math. Soc., 53 (11):1021-1099, doi: 10.1090/S0002-9904-1947-08909-6.
    [19] Wang P F. 2017. A high-order spatiotemporal precision-matching Taylor-Li scheme for time-dependent problems[J]. Adv. Atmos. Sci., 34 (12):1461-1471, doi: 10.1007/s00376-017-7018-1.
    [20] 王鹏飞, 王在志, 黄刚. 2007.舍入误差对大气环流模式模拟结果的影响[J].大气科学, 31 (5):815-825. doi: 10.3878/j.issn.1006-9895.2007.05.06

    Wang Pengfei, Wang Zaizhi, Huang Gang. 2007. The influence of round-off error on the atmospheric general circulation model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (5):815-825, doi: 10.3878/j.issn.1006-9895.2007.05.06.
    [21] Wang P F, Li J P, Li Q. 2012. Computational uncertainty and the application of a high-performance multiple precision scheme to obtaining the correct reference solution of Lorenz equations[J]. Numerical Algorithms, 59 (1):147-159, doi: 10.1007/s11075-011-9481-6.
    [22] Wang P F, Liu Y, Li J P. 2014. Clean numerical simulation for some chaotic systems using the parallel multiple-precision Taylor scheme[J]. Chinese Sci. Bull., 59 (33):4465-4472, doi: 10.1007/s11434-014-0412-5.
    [23] 吴声昌, 刘小清. 1996. KdV方程的时间谱离散方法[J].应用数学和力学, 17 (4):357-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600630414

    Wu Shengchang, Liu Xiaoqing. 1996. Spectral method in time for KdV equations[J]. Applied Mathematics and Mechanics (in Chinese), 17 (4):357-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600630414
  • 加载中
图(2)
计量
  • 文章访问数:  3301
  • HTML全文浏览量:  42
  • PDF下载量:  880
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-16
  • 网络出版日期:  2018-07-02
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回