高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京延庆山区降雪云物理特征的垂直观测和数值模拟研究

黄钰 郭学良 毕凯 周嵬 贾星灿 陈云波 马新成

黄钰, 郭学良, 毕凯, 周嵬, 贾星灿, 陈云波, 马新成. 北京延庆山区降雪云物理特征的垂直观测和数值模拟研究[J]. 大气科学, 2020, 44(2): 356-370. doi: 10.3878/j.issn.1006-9895.1903.18258
引用本文: 黄钰, 郭学良, 毕凯, 周嵬, 贾星灿, 陈云波, 马新成. 北京延庆山区降雪云物理特征的垂直观测和数值模拟研究[J]. 大气科学, 2020, 44(2): 356-370. doi: 10.3878/j.issn.1006-9895.1903.18258
HUANG Yu, GUO Xueliang, BI Kai, ZHOU Wei, JIA Xingcan, CHEN Yunbo, MA Xincheng. Vertical Observation and Numerical Simulation of the Clouds Physical Characteristics of Snow-Producing over Yanqing Mountain Area in Beijing[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(2): 356-370. doi: 10.3878/j.issn.1006-9895.1903.18258
Citation: HUANG Yu, GUO Xueliang, BI Kai, ZHOU Wei, JIA Xingcan, CHEN Yunbo, MA Xincheng. Vertical Observation and Numerical Simulation of the Clouds Physical Characteristics of Snow-Producing over Yanqing Mountain Area in Beijing[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(2): 356-370. doi: 10.3878/j.issn.1006-9895.1903.18258

北京延庆山区降雪云物理特征的垂直观测和数值模拟研究

doi: 10.3878/j.issn.1006-9895.1903.18258
基金项目: 国家重点研发计划项目2017YFC1501405,国家自然科学基金项目41805112、41675138

Vertical Observation and Numerical Simulation of the Clouds Physical Characteristics of Snow-Producing over Yanqing Mountain Area in Beijing

  • 摘要: 基于风廓线雷达、云雷达、粒子谱仪、微波辐射计和自动站等垂直观测设备,结合中尺度数值模式WRF对2017年3月23~24日北京延庆海坨山地区的一次降雪过程进行了观测和数值模拟研究。研究结果表明:垂直探测仪器结合中尺度数值模式可以获得降雪的宏观结构和微物理信息,有助于对降雪的深入研究。此次降雪过程由中高层西南及偏南暖湿气流与低层东南偏冷空气交汇造成动力和水汽辐合抬升形成,4~5 km高度处的风切变有利于降雪的增强。上升气流有助于水汽的输送、冰雪转化以及雪晶凝华、聚合,冰晶数浓度中心对应着上升运动顶部。然而此次降雪云系低层过冷云水含量不足,降雪回波<20 dBZ,回波顶高<7 km,雪花垂直下落速度<2 m s-1,地面降水量大值与低层强回波区对应。降雪粒子谱分布范围较窄,以直径1 mm左右的小粒子为主,相态主要为干雪,基本不存在混合相态。
  • 图  1  2017年3月23日18时至24日08时闫家坪自动站各气象要素小时走势图

    Figure  1.  Hourly variations of meteorological elements at Yanjiaping station from 1800 BJT (Beijing time) 23 March to 0800 BJT 24 March 2017

    图  2  2017年3月23日20时至24日08时风廓线雷达观测的风羽图

    Figure  2.  Wind barbs observed by wind profiler radar from 2000 BJT 23 March to 0800 BJT 24 March 2017

    图  3  2017年3月23日18时至24日05时云雷达观测的回波(单位:dBZ)演变

    Figure  3.  Evolution of echo (units: dBZ) observed by cloud radar from 1800 BJT 23 March to 0500 BJT 24 March 2017

    图  4  2017年3月23日18时至24日08时微波辐射计观测的(a)温度(单位:°C)、(b)相对湿度(单位:%)、(c)液态水含量(单位:g m−3)、(d)水汽密度(单位:g m−3)时间序列

    Figure  4.  Time evolution of (a) temperature (units: °C), (b) relative humidity (units: %), (c) liquid water content (units: g m−3), (d) vapor density (units: g m−3) observed by microwave radiometer from 1800 BJT 23 March to 0800 BJT 24 March 2017

    图  5  2017年3月23日18时至24日05时云雷达的(a)垂直径向速度(单位:m s−1)、(b)速度谱宽(单位:m s−1)的时间序列

    Figure  5.  Time evolution of (a) vertical radial velocity (units: m s−1), (b) velocity spectral width (units: m s−1) observed by cloud radar from 1800 BJT 23 March to 0500 BJT 24 2017

    图  6  2017年3月23日18时至24日05时云雷达观测的线性退偏正比(单位:dB)的时间序列

    Figure  6.  Time evolution of linear depolarization ratio (units: dB) observed by cloud radar from 1800 BJT 23 March to 0500 BJT 24 2017

    图  7  2017年3月23日18时至24日08时平均粒子谱。黄色线:降雪前(23日18~20时);红色线:降雪时(23日21~23时);蓝色线:降雪时(24日01~03时);黑色线:总降雪时段;绿色线:降雪后(24日06~08时)

    Figure  7.  Average size spectra of snowfall from 1800 BJT 23 March to 0800 BJT 24 2017. Yellow line: before snowfall (1800-2000 BJT 23 March); red line: snowfall (2100-2300 BJT 23 March); blue line: snowfall (0100-0300 BJT 24 March); black line: whole snowfall period (from 2100 BJT 23 March to 0300 BJT 24 March); green line: after snowfall (0600-0800 BJT 24 March)

    图  8  2017年3月23日20时至24日03:25降雪参量时间序列:(a)粒子谱数密度ND);(b)总数浓度(NT)、降雪率(R)、反射率因子(Z

    Figure  8.  Time series of snowfall parameters from 2000 BJT 23 March to 0325 BJT 24 March 2017: (a) Particle spectrum number density (N(D)); (b) total number concentration (NT), snowfall rate (R), reflectivity factor (Z)

    图  9  2017年3月23日08时至24日08时(a)观测和(b)模拟的回波强度时间序列

    Figure  9.  Time series of echo from 0800 BJT 23 March to 0800 BJT 24 March 2017: (a) Observations; (b) WRF (Weather Research and Forecasting) simulation

    图  10  2017年3月24日02时模拟的(a)回波强度(单位:dBZ)和(b)垂直速度(单位:m s−1)经向—垂直剖面。绿点为闫家坪站点位置,黑线为水平流场

    Figure  10.  Meridional-vertical cross sections of simulated (a) echo (units: dBZ) and (b) vertical velocity (units: m s−1) at 0200 BJT on 24 March 2017. Green dot is the location of Yanjiaping station, and the black lines indicate the horizontal flow field

    图  11  2017年3月24日02时模拟水成物含量经向—垂直剖面。qs:雪晶;qi:冰晶;qc:云水;qg:霰;qr:雨水。绿点为闫家坪站点位置,灰色虚线为等温线(单位:°C)

    Figure  11.  Meridional-vertical cross sections of simulated hydrometeor content at 0200 BJT on 24 March 2017. qs: snow; qi: ice; qc: cloud; qg: graupel; qr: rain. Green dot is the location of Yanjiaping station; gray dashed lines are isotherms (units: °C)

    图  12  2017年3月24日02时模拟水成物及其有关微物理过程的质量源项及其变化趋势:(a)各水成物总源项;(b)雪的变化趋势(total tendency:雪的变化总趋势;prs_sde:雪凝华;prs_iau:冰—雪自动转化;prs_sci:雪收集冰;prs_scw:雪收集云水;prs_rcs:雨—雪收集雪;prs_ide:雪冰凝华);(c)霰的变化趋势(total tendency:霰的变化总趋势;prg_scw:霰—雪收集云水;prg_rfz:霰冻结雨;prg_gde:霰凝华;prg_rcg:霰收集霰;prg_gcw:霰收集云水;prg_rci:霰收集冰;prg_rcs:霰收集雪)

    Figure  12.  Mass source and its tendency of simulated hydrometeor and related microphysical processes at 0200 BJT on 24 March 2017: (a) Total sources of various hydrometeors; (b) snow tendency (total tendency: total tendency of snow change; prs_sde: snow deposition; prs_iau: snow-ice autoconversion; prs_sci: snow collection ice; prs_scw: snow collection cloud water; prs_rcs: snow-rain collection snow; prs_ide: snow-ice deposition); (c) graupel tendency (total tendency: total tendency of graupel change; prg_scw: graupel-snow collection cloud water; prg_rfz: graupel-rain freezing; prg_gde: graupel deposition; prg_rcg: graupel collection graupel; prg_gcw: graupelcollection cloud water; prg_rci: graupel collection ice; prg_rcs: graupel collection snow)

    图  13  2017年3月23日08时至24日08时模拟的闫家坪站点(a)冰晶混合比(单位:g kg−1)、(b)雪晶混合比(单位:g kg−1)、(c)霰混合比(单位:g kg−1)、(d)云水混合比(单位:g kg−1)、(e)雨水混合比(单位:g kg−1)和(f)上升速度(等值线,单位:m s−1)和回波强度(阴影,单位:dBZ)时间序列

    Figure  13.  Time series of (a) ice mixing ratio (units: g kg−1), (b) snow mixing ratio (units: g kg−1), (c) graupel mixing ratio (units: g kg−1), (d) cloudwater mixing ratio (units: g kg−1), (e) rainwater mixing ratio (units: g kg−1), (f) vertical velocity (contours, units: m s−1) and echo (shadings, units: dBZ) at Yanjiaping station from 0800 BJT 23 March to 0800 BJT 24 March 2017

    表  1  风廓线雷达典型参数表

    Table  1.   Typical parameters of wind profile radar

    采样频率/MHz发射波长/mm采样周期/min波束宽度/(°)距离库长/m采样起始高度/m采样终止高度/m
    6022064°(水平)
    4°(垂直)
    240(高模)/120(中
    模)/120(低模)
    3150(高模)/1110(中
    模)/150(低模)
    10110(高模)/4590(中
    模)/3630(低模)
    下载: 导出CSV

    表  2  云雷达主要性能表

    Table  2.   Important performances of cloud radar

    采样频率发射波长/mm采样周期/s探测要素距离库长/m探测高度/m雷达体制
    33.44 GHz±65 MHz80.5~8.8回波强度、径向速度、谱宽、退偏正比15/30/60(可调)150~15000单发双收线极化
    下载: 导出CSV
  • [1] Battaglia A, Delanoë J. 2013. Synergies and complementarities of CloudSat-CALIPSO snow observations[J]. J. Geophys. Res., 118(2):721-731. doi: 10.1029/2012JD018092
    [2] Battaglia A, Rustemeier E, Tokay A, et al. 2010. PARSIVEL snow observation:A critical assessment[J]. J. Atmos. Oceanic Technol., 27(2):333-344. doi: 10.1175/2009JTECHA1332.1
    [3] Boe B A, Heimbach J A, Krauss T W, et al. 2014. The dispersion of silver iodide particles from ground-based generators over complex terrain. Part I:Observations with acoustic ice nucleus counters[J]. J. Appl. Meteor. Climatol., 53(6):1325-1341. doi: 10.1175/JAMC-D-13-0240.1
    [4] 陈羿辰, 金永利, 丁德平, 等. 2018. 毫米波测云雷达在降雪观测中的应用初步分析[J]. 大气科学, 42(1):134-149. Chen Yichen, Jin Yongli, Ding Deping, et al. 2018. Preliminary analysis on the application of millimeter wave cloud radar in snow observation[J]. Chinese Journal of Atmospheric Sciences, 42(1):134-149. doi: 10.3878/j.issn.1006-9895.1705.17121
    [5] Chu X, Xue L L, Geerts B, et al. 2014. A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I:Observations and model validations[J]. J. Appl. Meteor. Climatol., 53(10):2264-2286. doi: 10.1175/JAMC-D-14-0017.1
    [6] Deshler T, Reynolds D W, Huggins A W. 1990. Physical response of winter orographic clouds over the sierra Nevada to airborne seeding using dry ice or silver iodide[J]. J. Appl. Meteor., 29(4):288-300. doi: 10.1175/1520-0450(1990)029<0288:PROWOC>2.0.CO;2
    [7] Geerts B, Miao Q, Yang Y, et al. 2010. An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds[J]. J. Atmos. Sci., 67(10):3286-3302. doi: 10.1175/2010JAS3496.1
    [8] Geerts B, Yang Y, Rasmussen R, et al. 2015. Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data[J]. Mon. Wea. Rev., 143(2):644-665. doi: 10.1175/MWR-D-14-00199.1
    [9] Hashimoto A, Kato T, Hayashi S, et al. 2008. Seedability assessment for winter orographic snow clouds over the Echigo mountains[J]. SOLA, 4:69-72. doi: 10.2151/sola.2008-018
    [10] Hong S Y, Dudhia J, Chen S H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon. Wea. Rev., 132(1):103-120. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
    [11] Ishizaka M, Motoyoshi H, Nakai S. 2013. A new method for identifying the main type of solid hydrometeors contributing to snowfall from measured size-fall speed relationship[J]. J. Meteor. Soc. Japan, 91(6):747-762. doi: 10.2151/jmsj.2013-602
    [12] 贾星灿, 马新成, 毕凯, 等. 2018. 北京冬季降水粒子谱及其下落速度的分布特征[J]. 气象学报, 76(1):148-159. Jia Xingcan, Ma Xincheng, Bi Kai, et al. 2018. Distributions of particle size and fall velocities of winter precipitation in Beijing[J]. Acta Meteor. Sinica, 76(1):148-159. doi: 10.11676/qxxb2017.076
    [13] Jing X Q, Geerts B, Friedrich K, et al. 2015. Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds. Part I:Mostly stratiform clouds[J]. J. Appl. Meteor. Climatol., 54(9):1944-1969. doi: 10.1175/JAMC-D-14-0257.1
    [14] Kim D K, Lee D I. 2015. Atmospheric thickness and vertical structure properties in winter time precipitation events from microwave radiometer, radiosonde and wind profiler observations[J]. Meteor. Appl., 22(3):599-609. doi: 10.1002/met.1494
    [15] 李津, 赵思雄, 孙建华. 2017. 一次华北破纪录暴雪成因的分析研究[J]. 气候与环境研究, 22(6):683-698. Li Jin, Zhao Sixiong, Sun Jianhua. 2017. Analysis of a record heavy snowfall event in North China[J]. Climatic and Environmental Research, 22(6):683-698. doi: 10.3878/j.issn.1006-9585.2017.16121
    [16] Ludlam F H. 1955. Artificial snowfall from mountain clouds[J]. Tellus, 7(3):277-290. doi: 10.1111/j.2153-3490.1955.tb01164.x
    [17] Saleeby S M, Cotton W R, Lowenthal D, et al. 2013. Aerosol impacts on the microphysical growth processes of orographic snowfall[J]. J. Appl. Meteor. Climatol., 52(4):834-852. doi: 10.1175/JAMC-D-12-0193.1
    [18] Schneebeli M, Dawes N, Lehning M, et al. 2013. High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps[J]. J. Appl. Meteor. Climatol., 52(2):378-394. doi: 10.1175/JAMC-D-12-015.1
    [19] 孙建华, 黄翠银. 2011. 山东半岛一次暴雪过程的海岸锋三维结构特征[J]. 大气科学, 35(1):1-15. Sun Jianhua, Huang Cuiyin. 2011. The three-dimensional structure of coastal front producing heavy snow over the Shandong Peninsula[J]. Chinese Journal of Atmospheric Sciences, 35(1):1-15. doi: 10.3878/j.issn.1006-9895.2011.01.01
    [20] Xue L L, Chu X, Rasmussen R, et al. 2014. The dispersion of silver iodide particles from ground-based generators over complex terrain. Part II:WRF large-eddy simulations versus observations[J]. J. Appl. Meteor. Climatol., 53(6):1342-1361. doi: 10.1175/JAMC-D-13-0241.1
    [21] 杨成芳, 周淑玲, 刘畅, 等. 2015. 一次入海气旋局地暴雪的结构演变及成因观测分析[J]. 气象学报, 73(6):1039-1051. Yang Chengfang, Zhou Shuling, Liu Chang, et al. 2015. Case study of the cause and the dynamic structure for a small-scale snowstorm event associated with a cyclone[J]. Acta Meteor. Sinica, 73(6):1039-1051. doi: 10.11676/qxxb2015.082
    [22] 游来光, 王守荣, 王鼎丰, 等. 1989. 新疆冬季降雪微结构及其增长过程的初步研究[J]. 气象学报, 47(1):73-81. You Laiguang, Wang Shourong, Wang Dingfeng, et al. 1989. The microphysical structure of snow cloud and the growth process of snow in winter in Xinjiang[J]. Acta Meteor. Sinica, 47(1):73-81. doi: 10.11676/qxxb1989.009
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  2
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-23

目录

    /

    返回文章
    返回